Spaces:
Paused
Paused
import torch | |
import nodes | |
import comfy.utils | |
def camera_embeddings(elevation, azimuth): | |
elevation = torch.as_tensor([elevation]) | |
azimuth = torch.as_tensor([azimuth]) | |
embeddings = torch.stack( | |
[ | |
torch.deg2rad( | |
(90 - elevation) - (90) | |
), # Zero123 polar is 90-elevation | |
torch.sin(torch.deg2rad(azimuth)), | |
torch.cos(torch.deg2rad(azimuth)), | |
torch.deg2rad( | |
90 - torch.full_like(elevation, 0) | |
), | |
], dim=-1).unsqueeze(1) | |
return embeddings | |
class StableZero123_Conditioning: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "conditioning/3d_models" | |
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
t = vae.encode(encode_pixels) | |
cam_embeds = camera_embeddings(elevation, azimuth) | |
cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1) | |
positive = [[cond, {"concat_latent_image": t}]] | |
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] | |
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
return (positive, negative, {"samples":latent}) | |
class StableZero123_Conditioning_Batched: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "conditioning/3d_models" | |
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
t = vae.encode(encode_pixels) | |
cam_embeds = [] | |
for i in range(batch_size): | |
cam_embeds.append(camera_embeddings(elevation, azimuth)) | |
elevation += elevation_batch_increment | |
azimuth += azimuth_batch_increment | |
cam_embeds = torch.cat(cam_embeds, dim=0) | |
cond = torch.cat([comfy.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1) | |
positive = [[cond, {"concat_latent_image": t}]] | |
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] | |
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size}) | |
class SV3D_Conditioning: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"video_frames": ("INT", {"default": 21, "min": 1, "max": 4096}), | |
"elevation": ("FLOAT", {"default": 0.0, "min": -90.0, "max": 90.0, "step": 0.1, "round": False}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "conditioning/3d_models" | |
def encode(self, clip_vision, init_image, vae, width, height, video_frames, elevation): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
t = vae.encode(encode_pixels) | |
azimuth = 0 | |
azimuth_increment = 360 / (max(video_frames, 2) - 1) | |
elevations = [] | |
azimuths = [] | |
for i in range(video_frames): | |
elevations.append(elevation) | |
azimuths.append(azimuth) | |
azimuth += azimuth_increment | |
positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]] | |
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t), "elevation": elevations, "azimuth": azimuths}]] | |
latent = torch.zeros([video_frames, 4, height // 8, width // 8]) | |
return (positive, negative, {"samples":latent}) | |
NODE_CLASS_MAPPINGS = { | |
"StableZero123_Conditioning": StableZero123_Conditioning, | |
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched, | |
"SV3D_Conditioning": SV3D_Conditioning, | |
} | |