Spaces:
Paused
Paused
#Taken from: https://github.com/dbolya/tomesd | |
import torch | |
from typing import Tuple, Callable | |
import math | |
def do_nothing(x: torch.Tensor, mode:str=None): | |
return x | |
def mps_gather_workaround(input, dim, index): | |
if input.shape[-1] == 1: | |
return torch.gather( | |
input.unsqueeze(-1), | |
dim - 1 if dim < 0 else dim, | |
index.unsqueeze(-1) | |
).squeeze(-1) | |
else: | |
return torch.gather(input, dim, index) | |
def bipartite_soft_matching_random2d(metric: torch.Tensor, | |
w: int, h: int, sx: int, sy: int, r: int, | |
no_rand: bool = False) -> Tuple[Callable, Callable]: | |
""" | |
Partitions the tokens into src and dst and merges r tokens from src to dst. | |
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. | |
Args: | |
- metric [B, N, C]: metric to use for similarity | |
- w: image width in tokens | |
- h: image height in tokens | |
- sx: stride in the x dimension for dst, must divide w | |
- sy: stride in the y dimension for dst, must divide h | |
- r: number of tokens to remove (by merging) | |
- no_rand: if true, disable randomness (use top left corner only) | |
""" | |
B, N, _ = metric.shape | |
if r <= 0 or w == 1 or h == 1: | |
return do_nothing, do_nothing | |
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather | |
with torch.no_grad(): | |
hsy, wsx = h // sy, w // sx | |
# For each sy by sx kernel, randomly assign one token to be dst and the rest src | |
if no_rand: | |
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64) | |
else: | |
rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device) | |
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead | |
idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64) | |
idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype)) | |
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx) | |
# Image is not divisible by sx or sy so we need to move it into a new buffer | |
if (hsy * sy) < h or (wsx * sx) < w: | |
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64) | |
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view | |
else: | |
idx_buffer = idx_buffer_view | |
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices | |
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1) | |
# We're finished with these | |
del idx_buffer, idx_buffer_view | |
# rand_idx is currently dst|src, so split them | |
num_dst = hsy * wsx | |
a_idx = rand_idx[:, num_dst:, :] # src | |
b_idx = rand_idx[:, :num_dst, :] # dst | |
def split(x): | |
C = x.shape[-1] | |
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C)) | |
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C)) | |
return src, dst | |
# Cosine similarity between A and B | |
metric = metric / metric.norm(dim=-1, keepdim=True) | |
a, b = split(metric) | |
scores = a @ b.transpose(-1, -2) | |
# Can't reduce more than the # tokens in src | |
r = min(a.shape[1], r) | |
# Find the most similar greedily | |
node_max, node_idx = scores.max(dim=-1) | |
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] | |
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens | |
src_idx = edge_idx[..., :r, :] # Merged Tokens | |
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) | |
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: | |
src, dst = split(x) | |
n, t1, c = src.shape | |
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c)) | |
src = gather(src, dim=-2, index=src_idx.expand(n, r, c)) | |
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) | |
return torch.cat([unm, dst], dim=1) | |
def unmerge(x: torch.Tensor) -> torch.Tensor: | |
unm_len = unm_idx.shape[1] | |
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] | |
_, _, c = unm.shape | |
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c)) | |
# Combine back to the original shape | |
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) | |
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) | |
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) | |
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src) | |
return out | |
return merge, unmerge | |
def get_functions(x, ratio, original_shape): | |
b, c, original_h, original_w = original_shape | |
original_tokens = original_h * original_w | |
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1]))) | |
stride_x = 2 | |
stride_y = 2 | |
max_downsample = 1 | |
if downsample <= max_downsample: | |
w = int(math.ceil(original_w / downsample)) | |
h = int(math.ceil(original_h / downsample)) | |
r = int(x.shape[1] * ratio) | |
no_rand = False | |
m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand) | |
return m, u | |
nothing = lambda y: y | |
return nothing, nothing | |
class TomePatchModel: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "model_patches/unet" | |
def patch(self, model, ratio): | |
self.u = None | |
def tomesd_m(q, k, v, extra_options): | |
#NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q | |
#however from my basic testing it seems that using q instead gives better results | |
m, self.u = get_functions(q, ratio, extra_options["original_shape"]) | |
return m(q), k, v | |
def tomesd_u(n, extra_options): | |
return self.u(n) | |
m = model.clone() | |
m.set_model_attn1_patch(tomesd_m) | |
m.set_model_attn1_output_patch(tomesd_u) | |
return (m, ) | |
NODE_CLASS_MAPPINGS = { | |
"TomePatchModel": TomePatchModel, | |
} | |