Spaces:
Sleeping
Sleeping
File size: 9,755 Bytes
b9e6a5f 5037bb5 a617f87 5739196 a617f87 5037bb5 b9e6a5f 204110c e603b9c 204110c 059efa5 9f34a2a 204110c e603b9c 9f34a2a 059efa5 9f34a2a 6988669 a5b559a 6988669 059efa5 204110c 7a163bb a5b559a 4b1dab6 7a163bb b78be06 7a163bb b78be06 7a163bb b78be06 7a163bb b78be06 7a163bb b78be06 7a163bb b78be06 7a163bb b78be06 7a163bb 9fa6ffd b78be06 7a163bb 4b1dab6 7a163bb 4b1dab6 7a163bb b78be06 4b1dab6 ee8e438 fca01c1 a617f87 17675dd 23359a9 17675dd 23359a9 17675dd a617f87 5739196 2992cd6 5739196 8ba1705 17675dd df81345 5739196 a751c70 7973db0 5739196 169e689 5739196 4eed7dc 5739196 8416fad c7d7cee b0c9028 a5b559a 8416fad a5b559a 8416fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import json
import math
import random
import os
import streamlit as st
import lyricsgenius
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
st.set_page_config(page_title="HuggingArtists")
st.title("HuggingArtists")
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<img src="https://raw.githubusercontent.com/AlekseyKorshuk/huggingartists/master/img/logo.jpg" width="420" />
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p style='text-align: center'>
<a href="https://github.com/AlekseyKorshuk/huggingartists" target="_blank">GitHub</a> | <a href="https://wandb.ai/huggingartists/huggingartists/reportlist" target="_blank">Project Report</a>
</p>
<p class="aligncenter">
<a href="https://github.com/AlekseyKorshuk/huggingartists" target="_blank">
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social"/>
</a>
</p>
<p class="aligncenter">
<a href="https://t.me/joinchat/_CQ04KjcJ-4yZTky" target="_blank">
<img src="https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram"/>
</a>
</p>
<p class="aligncenter">
<a href="https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb" target="_blank">
<img src="https://colab.research.google.com/assets/colab-badge.svg"/>
</a>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.header("Generation settings:")
num_sequences = st.sidebar.number_input(
"Number of sequences to generate",
min_value=1,
value=5,
help="The amount of generated texts",
)
min_length = st.sidebar.number_input(
"Minimum length of the sequence",
min_value=1,
value=100,
help="The minimum length of the sequence to be generated",
)
max_length= st.sidebar.number_input(
"Maximum length of the sequence",
min_value=1,
value=160,
help="The maximum length of the sequence to be generated",
)
temperature = st.sidebar.slider(
"Temperature",
min_value=0.0,
max_value=3.0,
step=0.01,
value=1.0,
help="The value used to module the next token probabilities",
)
top_p = st.sidebar.slider(
"Top-P",
min_value=0.0,
max_value=1.0,
step=0.01,
value=0.95,
help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
top_k= st.sidebar.number_input(
"Top-K",
min_value=0,
value=50,
step=1,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
caption = (
"In [HuggingArtists](https://github.com/AlekseyKorshuk/huggingartist), we can generate lyrics by a specific artist. This was made by fine-tuning a pre-trained [HuggingFace Transformer](https://huggingface.co) on parsed datasets from [Genius](https://genius.com)."
)
st.markdown("[HuggingArtists](https://github.com/AlekseyKorshuk/huggingartist) - Train a model to generate lyrics 🎵")
st.markdown(caption)
st.subheader("Settings:")
artist_name = st.text_input("Artist name:", "Eminem")
start = st.text_input("Beginning of the song:", "But for me to rap like a computer")
TOKEN = "q_JK_BFy9OMiG7fGTzL-nUto9JDv3iXI24aYRrQnkOvjSCSbY4BuFIindweRsr5I"
genius = lyricsgenius.Genius(TOKEN)
model_html = """
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
\t\t\tstyle="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('USER_PROFILE')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">USER_NAME</div>
<a href="https://genius.com/artists/USER_HANDLE">
\t<div style="text-align: center; font-size: 14px;">@USER_HANDLE</div>
</a>
</div>
"""
def post_process(output_sequences):
predictions = []
generated_sequences = []
max_repeat = 2
# decode prediction
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
generated_sequence = generated_sequence.tolist()
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
generated_sequences.append(text.strip())
for i, g in enumerate(generated_sequences):
res = str(g).replace('\n\n\n', '\n').replace('\n\n', '\n')
lines = res.split('\n')
# print(lines)
# i = max_repeat
# while i != len(lines):
# remove_count = 0
# for index in range(0, max_repeat):
# # print(i - index - 1, i - index)
# if lines[i - index - 1] == lines[i - index]:
# remove_count += 1
# if remove_count == max_repeat:
# lines.pop(i)
# i -= 1
# else:
# i += 1
predictions.append('\n'.join(lines))
return predictions
if st.button("Run"):
model_name = None
with st.spinner(text=f"Searching for {artist_name } in Genius..."):
artist = genius.search_artist(artist_name, max_songs=0, get_full_info=False)
if artist is not None:
artist_dict = genius.artist(artist.id)['artist']
artist_url = str(artist_dict['url'])
model_name = artist_url[artist_url.rfind('/') + 1:].lower()
st.markdown(model_html.replace("USER_PROFILE",artist.image_url).replace("USER_NAME",artist.name).replace("USER_HANDLE",model_name), unsafe_allow_html=True)
else:
st.markdown(f"Could not find {artist_name}! Be sure that he/she exists in [Genius](https://genius.com/).")
if model_name is not None:
with st.spinner(text=f"Downloading the model of {artist_name }..."):
model = None
tokenizer = None
try:
tokenizer = AutoTokenizer.from_pretrained(f"huggingartists/{model_name}")
model = AutoModelForCausalLM.from_pretrained(f"huggingartists/{model_name}")
except Exception as ex:
# st.markdown(ex)
st.markdown(f"Model for this artist does not exist yet. Create it in just 5 min with [Colab Notebook](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb):")
st.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<a href="https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb" target="_blank">
<img src="https://colab.research.google.com/assets/colab-badge.svg"/>
</a>
</p>
""",
unsafe_allow_html=True,
)
if model is not None:
with st.spinner(text=f"Generating lyrics..."):
encoded_prompt = tokenizer(start, add_special_tokens=False, return_tensors="pt").input_ids
encoded_prompt = encoded_prompt.to(model.device)
# prediction
output_sequences = model.generate(
input_ids=encoded_prompt,
max_length=max_length,
min_length=min_length,
temperature=float(temperature),
top_p=float(top_p),
top_k=int(top_k),
do_sample=True,
repetition_penalty=1.0,
num_return_sequences=num_sequences
)
# Post-processing
predictions = post_process(output_sequences)
st.subheader("Results")
for prediction in predictions:
st.text(prediction)
st.subheader("Please star this repository and join my Telegram Channel:")
st.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<a href="https://github.com/AlekseyKorshuk/huggingartists" target="_blank">
<img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social"/>
</a>
</p>
<p class="aligncenter">
<a href="https://t.me/joinchat/_CQ04KjcJ-4yZTky" target="_blank">
<img src="https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram"/>
</a>
</p>
""",
unsafe_allow_html=True,
) |