Spaces:
Running
Running
Commit
·
bd87e2e
1
Parent(s):
7a8a71f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import einops
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from PIL import Image
|
10 |
+
from torch import nn
|
11 |
+
from torchvision.utils import save_image
|
12 |
+
|
13 |
+
|
14 |
+
class Generator(nn.Module):
|
15 |
+
def __init__(self, nc=4, nz=100, ngf=64):
|
16 |
+
super(Generator, self).__init__()
|
17 |
+
self.network = nn.Sequential(
|
18 |
+
nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False),
|
19 |
+
nn.BatchNorm2d(ngf * 4),
|
20 |
+
nn.ReLU(True),
|
21 |
+
nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
|
22 |
+
nn.BatchNorm2d(ngf * 2),
|
23 |
+
nn.ReLU(True),
|
24 |
+
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False),
|
25 |
+
nn.BatchNorm2d(ngf),
|
26 |
+
nn.ReLU(True),
|
27 |
+
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
28 |
+
nn.Tanh(),
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, input):
|
32 |
+
output = self.network(input)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
model = Generator()
|
37 |
+
weights_path = hf_hub_download('AlekseyKorshuk/dooggies', 'pytorch_model.bin')
|
38 |
+
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
|
39 |
+
|
40 |
+
|
41 |
+
@torch.no_grad()
|
42 |
+
def interpolate(save_dir='./lerp/', frames=100, rows=8, cols=8):
|
43 |
+
save_dir = Path(save_dir)
|
44 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
45 |
+
|
46 |
+
z1 = torch.randn(rows * cols, 100, 1, 1)
|
47 |
+
z2 = torch.randn(rows * cols, 100, 1, 1)
|
48 |
+
|
49 |
+
zs = []
|
50 |
+
for i in range(frames):
|
51 |
+
alpha = i / frames
|
52 |
+
z = (1 - alpha) * z1 + alpha * z2
|
53 |
+
zs.append(z)
|
54 |
+
|
55 |
+
zs += zs[::-1] # also go in reverse order to complete loop
|
56 |
+
|
57 |
+
for i, z in enumerate(zs):
|
58 |
+
imgs = model(z)
|
59 |
+
|
60 |
+
# normalize
|
61 |
+
imgs = (imgs + 1) / 2
|
62 |
+
|
63 |
+
imgs = (imgs.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
|
64 |
+
|
65 |
+
# create grid
|
66 |
+
imgs = einops.rearrange(imgs, "(b1 b2) h w c -> (b1 h) (b2 w) c", b1=rows, b2=cols)
|
67 |
+
|
68 |
+
Image.fromarray(imgs).save(save_dir / f"{i:03}.png")
|
69 |
+
|
70 |
+
subprocess.call(f"convert -dispose previous -delay 10 -loop 0 {save_dir}/*.png out.gif".split())
|
71 |
+
|
72 |
+
|
73 |
+
def predict(choice, seed):
|
74 |
+
torch.manual_seed(seed)
|
75 |
+
|
76 |
+
if choice == 'interpolation':
|
77 |
+
interpolate()
|
78 |
+
return 'out.gif'
|
79 |
+
else:
|
80 |
+
z = torch.randn(64, 100, 1, 1)
|
81 |
+
punks = model(z)
|
82 |
+
save_image(punks, "punks.png", normalize=True)
|
83 |
+
return 'punks.png'
|
84 |
+
|
85 |
+
|
86 |
+
gr.Interface(
|
87 |
+
predict,
|
88 |
+
inputs=[
|
89 |
+
gr.inputs.Dropdown(['image', 'interpolation'], label='Output Type'),
|
90 |
+
gr.inputs.Slider(label='Seed', minimum=0, maximum=1000, default=42),
|
91 |
+
],
|
92 |
+
outputs="image",
|
93 |
+
title="Cryptopunks GAN",
|
94 |
+
description="These CryptoPunks do not exist. You have the choice of either generating random punks, or a gif showing the interpolation between two random punk grids.",
|
95 |
+
article="<p style='text-align: center'><a href='https://arxiv.org/pdf/1511.06434.pdf'>Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks</a> | <a href='https://github.com/teddykoker/cryptopunks-gan'>Github Repo</a></p>",
|
96 |
+
examples=[["interpolation", 123], ["interpolation", 42], ["image", 456], ["image", 42]],
|
97 |
+
).launch(cache_examples=True)
|