import gradio as gr import logging import random import os from datasets import load_dataset from huggingface_hub import login try: login() except: pass auth_token = os.environ.get('HF_TOKEN', None) try: iiw_400 = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="IIW-400") docci_test = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="DOCCI_Test") locnar_eval = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="LocNar_Eval") cm_3600 = load_dataset('google/imageinwords', token=auth_token, trust_remote_code=True, name="CM_3600") except Exception as e: raise ValueError("could you fetch the datasets with error: %s", e) _SELECTOR_TO_DATASET = { "IIW-400": iiw_400, "DOCCI_Test": docci_test, "LocNar_Eval": locnar_eval, "CM_3600": cm_3600 } def display_iiw_data_with_slider_change(dataset_type, index): dataset_split, image_key, image_url_key = "test", "image/key", "image/url" if dataset_type == "LocNar_Eval": dataset_split = "validation" if dataset_type == "DOCCI_Test": image_url_key = "image/thumbnail_url" image_key = "image" logging.debug(f"SELECTION: {dataset_type} : {dataset_split}: {index}") data = _SELECTOR_TO_DATASET[dataset_type][dataset_split][index] image_html = f'' image_key_html = f"
Image Key: {data[image_key]}
" iiw_text, iiw_p5b_text, ratings = "", "", "" if "IIW" in data: iiw_text = f"{data['IIW']}
" if "IIW-P5B" in data: iiw_p5b_text = f"{data['IIW-P5B']}
" if 'iiw-human-sxs-iiw-p5b' in data and data['iiw-human-sxs-iiw-p5b'] is not None: ratings = "{emoji} {key}: {value}
" return image_key_html, image_html, iiw_text, iiw_p5b_text, ratings def display_iiw_data_with_dataset_change(dataset_type, index): slider = gr.Slider(minimum=0, maximum=max_index(dataset_type)-1, label="Dataset Size", value=0) image_key_html, image_html, iiw_text, iiw_p5b_text, ratings = display_iiw_data_with_slider_change(dataset_type, index=0) return slider, image_key_html, image_html, iiw_text, iiw_p5b_text, ratings def max_index(dataset_type): dataset_split = "test" if dataset_type == "LocNar_Eval": dataset_split = "validation" logging.debug(f"SELECTION: {dataset_type} : {dataset_split}") dataset_instance =_SELECTOR_TO_DATASET[dataset_type][dataset_split] return len(dataset_instance) with gr.Blocks() as demo: gr.Markdown("# ImageInWords: Unlocking Hyper-Detailed Image Descriptions") gr.Markdown("Slide across the slider to see various examples across the different IIW datasets.") with gr.Row(): dataset_selector = gr.Radio(["IIW-400", "DOCCI_Test", "LocNar_Eval", "CM_3600"], value="IIW-400", label="IIW Datasets") slider, image_key_html, image_html, iiw_text, iiw_p5b_text, ratings = display_iiw_data_with_dataset_change(dataset_selector.value, index=0) with gr.Row(): with gr.Column(): image_output = gr.HTML(image_html) with gr.Column(): image_key_output = gr.HTML(image_key_html) if iiw_text: iiw_text_output = gr.HTML(iiw_text) if iiw_p5b_text: iiw_p5b_text_output = gr.HTML(iiw_p5b_text) if ratings: ratings_output = gr.HTML(ratings) slider.change(display_iiw_data_with_slider_change, inputs=[dataset_selector, slider], outputs=[image_key_output, image_output, iiw_text_output, iiw_p5b_text_output, ratings_output]) dataset_selector.change(display_iiw_data_with_dataset_change, inputs=[dataset_selector, slider], outputs=[slider, image_key_output, image_output, iiw_text_output, iiw_p5b_text_output, ratings_output]) demo.launch(debug=True)