File size: 4,975 Bytes
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import annotations

import math
import random
import sys
from argparse import ArgumentParser

import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast

sys.path.append("./stable_diffusion")

from stable_diffusion.ldm.util import instantiate_from_config


class CFGDenoiser(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
        cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
        cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
        cfg_cond = {
            "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
            "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
        }
        out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
        return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    if vae_ckpt is not None:
        print(f"Loading VAE from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
        sd = {
            k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
            for k, v in sd.items()
        }
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)
    return model


def main():
    parser = ArgumentParser()
    parser.add_argument("--resolution", default=512, type=int)
    parser.add_argument("--steps", default=100, type=int)
    parser.add_argument("--config", default="configs/generate.yaml", type=str)
    parser.add_argument("--ckpt", default="checkpoints/instruct-pix2pix-00-22000.ckpt", type=str)
    parser.add_argument("--vae-ckpt", default=None, type=str)
    parser.add_argument("--input", required=True, type=str)
    parser.add_argument("--output", required=True, type=str)
    parser.add_argument("--edit", required=True, type=str)
    parser.add_argument("--cfg-text", default=7.5, type=float)
    parser.add_argument("--cfg-image", default=1.5, type=float)
    parser.add_argument("--seed", type=int)
    args = parser.parse_args()

    config = OmegaConf.load(args.config)
    model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
    model.eval().cuda()
    model_wrap = K.external.CompVisDenoiser(model)
    model_wrap_cfg = CFGDenoiser(model_wrap)
    null_token = model.get_learned_conditioning([""])

    seed = random.randint(0, 100000) if args.seed is None else args.seed
    input_image = Image.open(args.input).convert("RGB")
    width, height = input_image.size
    factor = args.resolution / max(width, height)
    factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    width = int((width * factor) // 64) * 64
    height = int((height * factor) // 64) * 64
    input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

    if args.edit == "":
        input_image.save(args.output)
        return

    with torch.no_grad(), autocast("cuda"), model.ema_scope():
        cond = {}
        cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])]
        input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
        input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
        cond["c_concat"] = [model.encode_first_stage(input_image).mode()]

        uncond = {}
        uncond["c_crossattn"] = [null_token]
        uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]

        sigmas = model_wrap.get_sigmas(args.steps)

        extra_args = {
            "cond": cond,
            "uncond": uncond,
            "text_cfg_scale": args.cfg_text,
            "image_cfg_scale": args.cfg_image,
        }
        torch.manual_seed(seed)
        z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
        z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
        x = model.decode_first_stage(z)
        x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
        x = 255.0 * rearrange(x, "1 c h w -> h w c")
        edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
    edited_image.save(args.output)


if __name__ == "__main__":
    main()