File size: 23,421 Bytes
5e4b316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
"""Utility functions for training and inference."""
import inspect
import math
import os
import pickle
import shutil
import sys
from dataclasses import asdict, is_dataclass
from io import BytesIO
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Literal,
Mapping,
Optional,
TypeVar,
Union,
)
import lightning as L
import torch
import torch.nn as nn
import torch.utils._device
import yaml
from lightning.fabric.loggers import CSVLogger, TensorBoardLogger
from lightning.fabric.strategies import FSDPStrategy
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.cli import instantiate_class
from torch.serialization import normalize_storage_type
from typing_extensions import Self
if TYPE_CHECKING:
from litgpt import GPT, Config
def init_out_dir(out_dir: Path) -> Path:
if not out_dir.is_absolute() and "LIGHTNING_ARTIFACTS_DIR" in os.environ:
return Path(os.getenv("LIGHTNING_ARTIFACTS_DIR")) / out_dir
return out_dir
def find_resume_path(
resume: Union[bool, Literal["auto"], Path], out_dir: Path
) -> Optional[Path]:
if not resume or isinstance(resume, Path):
return resume
resume_path = max(
out_dir.rglob("step-*/*.pth"),
key=(lambda p: int(p.parent.name.split("-")[1])),
default=None,
)
if resume == "auto":
return resume_path
if resume is True and resume_path is None:
raise FileNotFoundError(
f"You passed `--resume=True`, but no checkpont file was found in `--out_dir={out_dir}`."
)
return resume_path
def find_multiple(n: int, k: int) -> int:
assert k > 0
if n % k == 0:
return n
return n + k - (n % k)
def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int:
total = 0
for p in module.parameters():
if requires_grad is None or p.requires_grad == requires_grad:
if hasattr(p, "quant_state"):
# bitsandbytes 4bit layer support
total += math.prod(p.quant_state.shape)
else:
total += p.numel()
return total
def reset_parameters(module: nn.Module) -> None:
"""Calls `reset_parameters` on the module and all its submodules."""
for mod in module.modules():
if callable(getattr(mod, "reset_parameters", None)):
mod.reset_parameters()
def check_valid_checkpoint_dir(
checkpoint_dir: Path,
model_filename: str = "lit_model.pth",
verbose: bool = True,
raise_error: bool = False,
) -> None:
files = {
model_filename: (checkpoint_dir / model_filename).is_file(),
"model_config.yaml": (checkpoint_dir / "model_config.yaml").is_file(),
"tokenizer.json OR tokenizer.model": (
checkpoint_dir / "tokenizer.json"
).is_file()
or (checkpoint_dir / "tokenizer.model").is_file(),
"tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(),
}
if checkpoint_dir.is_dir():
if all(files.values()):
# we're good
return
problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}"
else:
problem = " is not a checkpoint directory"
# list locally available checkpoints
available = list(Path("checkpoints").glob("*/*"))
if available:
options = "\n".join([""] + [repr(str(p.resolve())) for p in available])
extra = f"\nYou have downloaded locally:{options}\n"
else:
extra = ""
if verbose:
error_message = (
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
"\nFind download instructions at https://github.com/Lightning-AI/litgpt/blob/main/tutorials\n"
f"{extra}\nSee all download options by running:\n litgpt download"
)
print(error_message, file=sys.stderr)
if raise_error:
raise FileNotFoundError(
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
)
else:
raise SystemExit(1)
class SavingProxyForStorage:
def __init__(self, obj, saver, protocol_version=5):
self.protocol_version = protocol_version
self.saver = saver
if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)):
raise TypeError(f"expected storage, not {type(obj)}")
# this logic is taken from PyTorch 2.0+ torch/serialization.py
if isinstance(obj, torch.storage.TypedStorage):
# PT upstream wants to deprecate this eventually...
storage = obj._untyped_storage
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj._size()
else:
storage = obj
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
storage_key = saver._write_storage_and_return_key(storage)
location = torch.serialization.location_tag(storage)
self.storage_info = (
"storage",
storage_type,
storage_key,
location,
storage_numel,
)
def __reduce_ex__(self, protocol_version):
assert False, "this should be handled with out of band"
class SavingProxyForTensor:
def __init__(self, tensor, saver, protocol_version=5):
self.protocol_version = protocol_version
self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version)
if reduce_args[0] == torch._utils._rebuild_tensor_v2:
# for Tensors with Python attributes
(a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args
assert isinstance(
storage, torch.storage.TypedStorage
), "Please check for updates"
storage_proxy = SavingProxyForStorage(
storage, saver, protocol_version=protocol_version
)
self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args)
else:
(storage, *other_reduce_args) = reduce_args
assert isinstance(
storage, torch.storage.TypedStorage
), "Please check for updates"
storage_proxy = SavingProxyForStorage(
storage, saver, protocol_version=protocol_version
)
self.reduce_args = (storage_proxy, *other_reduce_args)
def __reduce_ex__(self, protocol_version):
if protocol_version != self.protocol_version:
raise RuntimeError(
f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}"
)
return self.reduce_ret_fn, self.reduce_args
class IncrementalPyTorchPickler(pickle.Pickler):
def __init__(self, saver, *args, **kwargs):
super().__init__(*args, **kwargs)
self.storage_dtypes = {}
self.saver = saver
self.id_map = {}
# this logic is taken from PyTorch 2.0+ torch/serialization.py
def persistent_id(self, obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, SavingProxyForStorage):
return obj.storage_info
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._untyped_storage
storage_dtype = obj.dtype
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj._size()
else:
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if storage.data_ptr() != 0:
if storage.data_ptr() in self.storage_dtypes:
if storage_dtype != self.storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
"Cannot save multiple tensors or storages that view the same data as different types"
)
else:
self.storage_dtypes[storage.data_ptr()] = storage_dtype
storage_key = self.id_map.get(storage._cdata)
if storage_key is None:
storage_key = self.saver._write_storage_and_return_key(storage)
self.id_map[storage._cdata] = storage_key
location = torch.serialization.location_tag(storage)
return ("storage", storage_type, storage_key, location, storage_numel)
return None
class incremental_save:
def __init__(self, name):
self.name = name
self.zipfile = torch._C.PyTorchFileWriter(str(name))
self.has_saved = False
self.next_key = 0
def __enter__(self):
return self
def store_early(self, tensor):
if isinstance(tensor, torch.Tensor):
return SavingProxyForTensor(tensor, self)
raise TypeError(f"can only store tensors early, not {type(tensor)}")
def save(self, obj):
if self.has_saved:
raise RuntimeError("have already saved")
# Write the pickle data for `obj`
data_buf = BytesIO()
pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5)
pickler.dump(obj)
data_value = data_buf.getvalue()
self.zipfile.write_record("data.pkl", data_value, len(data_value))
self.has_saved = True
def _write_storage_and_return_key(self, storage):
if self.has_saved:
raise RuntimeError("have already saved")
key = self.next_key
self.next_key += 1
name = f"data/{key}"
if storage.device.type != "cpu":
storage = storage.cpu()
num_bytes = storage.nbytes()
self.zipfile.write_record(name, storage.data_ptr(), num_bytes)
return key
def __exit__(self, type, value, traceback):
self.zipfile.write_end_of_file()
T = TypeVar("T")
def chunked_cross_entropy(
logits: Union[torch.Tensor, List[torch.Tensor]],
targets: torch.Tensor,
chunk_size: int = 128,
ignore_index: int = -100,
) -> torch.Tensor:
# with large max_sequence_lengths, the beginning of `backward` allocates a large memory chunk which can dominate
# the memory usage in fine-tuning settings with low number of parameters.
# as a workaround hack, the cross entropy computation is chunked to force it to deallocate on the go, reducing
# the memory spike's magnitude
# lm_head was chunked (we are fine-tuning)
if isinstance(logits, list):
# don't want to chunk cross entropy
if chunk_size == 0:
logits = torch.cat(logits, dim=1)
logits = logits.reshape(-1, logits.size(-1))
targets = targets.reshape(-1)
return torch.nn.functional.cross_entropy(
logits, targets, ignore_index=ignore_index
)
# chunk cross entropy
logit_chunks = [
logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits
]
target_chunks = [
target_chunk.reshape(-1)
for target_chunk in targets.split(logits[0].size(1), dim=1)
]
loss_chunks = [
torch.nn.functional.cross_entropy(
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
)
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
]
non_masked_elems = (targets != ignore_index).sum()
# See [non_masked_elems div note]
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
torch.ones_like(non_masked_elems)
)
# no chunking at all
logits = logits.reshape(-1, logits.size(-1))
targets = targets.reshape(-1)
if chunk_size == 0:
return torch.nn.functional.cross_entropy(
logits, targets, ignore_index=ignore_index
)
# lm_head wasn't chunked, chunk cross entropy
logit_chunks = logits.split(chunk_size)
target_chunks = targets.split(chunk_size)
loss_chunks = [
torch.nn.functional.cross_entropy(
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
)
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
]
non_masked_elems = (targets != ignore_index).sum()
# [non_masked_elems div note]:
# max(1, non_masked_elems) would be more ergonomic to avoid a division by zero. However that
# results in a python int which is then passed back to torch division. By using the
# `x.maximum(torch.ones_like(x))` pattern we avoid a cudaStreamSynchronize.
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
torch.ones_like(non_masked_elems)
)
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict:
for checkpoint_name, attribute_name in mapping.items():
full_checkpoint_name = prefix + checkpoint_name
if full_checkpoint_name in state_dict:
full_attribute_name = prefix + attribute_name
state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name)
return state_dict
def get_default_supported_precision(training: bool) -> str:
"""Return default precision that is supported by the hardware: either `bf16` or `16`.
Args:
training: `-mixed` or `-true` version of the precision to use
Returns:
default precision that is suitable for the task and is supported by the hardware
"""
from lightning.fabric.accelerators import MPSAccelerator
if MPSAccelerator.is_available() or (
torch.cuda.is_available() and not torch.cuda.is_bf16_supported()
):
return "16-mixed" if training else "16-true"
return "bf16-mixed" if training else "bf16-true"
def load_checkpoint(
fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True
) -> None:
if isinstance(fabric.strategy, FSDPStrategy):
fabric.load_raw(checkpoint_path, model, strict=strict)
else:
state_dict = lazy_load(checkpoint_path)
state_dict = state_dict.get("model", state_dict)
model.load_state_dict(state_dict, strict=strict)
def flops_per_param(
max_seq_length: int, n_layer: int, n_embd: int, n_params: int
) -> int:
flops_per_token = (
2 * n_params
) # each parameter is used for a MAC (2 FLOPS) per network operation
# this assumes that all samples have a fixed length equal to the block size
# which is most likely false during finetuning
flops_per_seq = flops_per_token * max_seq_length
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
return flops_per_seq + attn_flops_per_seq
def estimate_flops(model: "GPT", training: bool) -> int:
"""Measures estimated FLOPs for MFU.
Refs:
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2
"""
# using all parameters for this is a naive over estimation because not all model parameters actually contribute to
# this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
# (~10%) compared to the measured FLOPs, making those lower but more realistic.
# For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
n_trainable_params = num_parameters(model, requires_grad=True)
trainable_flops = flops_per_param(
model.max_seq_length,
model.config.n_layer,
model.config.n_embd,
n_trainable_params,
)
# forward + backward + gradients (assumes no gradient accumulation)
ops_per_step = 3 if training else 1
n_frozen_params = num_parameters(model, requires_grad=False)
frozen_flops = flops_per_param(
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params
)
# forward + backward
frozen_ops_per_step = 2 if training else 1
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops
class CycleIterator:
"""An iterator that cycles through an iterable indefinitely.
Example:
>>> iterator = CycleIterator([1, 2, 3])
>>> [next(iterator) for _ in range(5)]
[1, 2, 3, 1, 2]
Note:
Unlike ``itertools.cycle``, this iterator does not cache the values of the iterable.
"""
def __init__(self, iterable: Iterable) -> None:
self.iterable = iterable
self.epoch = 0
self._iterator = None
def __next__(self) -> Any:
if self._iterator is None:
self._iterator = iter(self.iterable)
try:
return next(self._iterator)
except StopIteration:
self._iterator = iter(self.iterable)
self.epoch += 1
return next(self._iterator)
def __iter__(self) -> Self:
return self
def copy_config_files(source_dir: Path, out_dir: Path) -> None:
"""Copies the specified configuration and tokenizer files into the output directory."""
config_files = ["config.json", "generation_config.json", "model_config.yaml"]
tokenizer_files = ["tokenizer.json", "tokenizer.model", "tokenizer_config.json"]
for file_name in config_files + tokenizer_files:
src_path = source_dir / file_name
if src_path.exists():
shutil.copy(src_path, out_dir)
def CLI(*args: Any, **kwargs: Any) -> Any:
from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options
set_docstring_parse_options(attribute_docstrings=True)
set_config_read_mode(urls_enabled=True)
return CLI(*args, **kwargs)
def capture_hparams() -> Dict[str, Any]:
"""Captures the local variables ('hyperparameters') from where this function gets called."""
caller_frame = inspect.currentframe().f_back
locals_of_caller = caller_frame.f_locals
hparams = {}
for name, value in locals_of_caller.items():
if value is None or isinstance(value, (int, float, str, bool, Path)):
hparams[name] = value
elif is_dataclass(value):
hparams[name] = asdict(value)
else:
hparams[name] = str(value)
return hparams
def save_hyperparameters(function: callable, checkpoint_dir: Path) -> None:
"""Captures the CLI parameters passed to `function` without running `function` and saves them to the checkpoint."""
from jsonargparse import capture_parser
# TODO: Make this more robust
# This hack strips away the subcommands from the top-level CLI
# to parse the file as if it was called as a script
known_commands = [
("finetune_full",), # For subcommands, use `("finetune", "full")` etc
("finetune_lora",),
("finetune_adapter",),
("finetune_adapter_v2",),
("finetune",),
("pretrain",),
]
for known_command in known_commands:
unwanted = slice(1, 1 + len(known_command))
if tuple(sys.argv[unwanted]) == known_command:
sys.argv[unwanted] = []
parser = capture_parser(lambda: CLI(function))
config = parser.parse_args()
parser.save(config, checkpoint_dir / "hyperparameters.yaml", overwrite=True)
def save_config(config: "Config", checkpoint_dir: Path) -> None:
config_dict = asdict(config)
with open(checkpoint_dir / "model_config.yaml", "w", encoding="utf-8") as fp:
yaml.dump(config_dict, fp)
def parse_devices(devices: Union[str, int]) -> int:
if devices in (-1, "auto"):
return torch.cuda.device_count() or 1
if isinstance(devices, int) and devices > 0:
return devices
raise ValueError(f"Devices must be 'auto' or a positive integer, got: {devices!r}")
def choose_logger(
logger_name: Literal["csv", "tensorboard", "wandb"],
out_dir: Path,
name: str,
log_interval: int = 1,
resume: Optional[bool] = None,
**kwargs: Any,
):
if logger_name == "csv":
return CSVLogger(
root_dir=(out_dir / "logs"),
name="csv",
flush_logs_every_n_steps=log_interval,
**kwargs,
)
if logger_name == "tensorboard":
return TensorBoardLogger(
root_dir=(out_dir / "logs"), name="tensorboard", **kwargs
)
if logger_name == "wandb":
return WandbLogger(project=name, resume=resume, **kwargs)
raise ValueError(
f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'."
)
def get_argument_names(cls):
sig = inspect.signature(cls.__init__)
return {
name
for name, param in sig.parameters.items()
if param.kind
in [inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY]
}
def instantiate_bnb_optimizer(optimizer, model_parameters):
if (isinstance(optimizer, str) and "AdamW" not in optimizer) or (
isinstance(optimizer, dict) and "AdamW" not in optimizer.get("class_path", "")
):
raise ValueError(
"The chosen quantization format only supports the AdamW optimizer."
)
import bitsandbytes as bnb
if isinstance(optimizer, str):
optimizer = bnb.optim.PagedAdamW(model_parameters)
else:
optim_args = get_argument_names(bnb.optim.PagedAdamW)
allowed_kwargs = {
key: optimizer["init_args"][key]
for key in optim_args & optimizer["init_args"].keys()
}
optimizer = bnb.optim.PagedAdamW(model_parameters, **allowed_kwargs)
return optimizer
def instantiate_torch_optimizer(optimizer, model_parameters, **kwargs):
if isinstance(optimizer, str):
optimizer_cls = getattr(torch.optim, optimizer)
optimizer = optimizer_cls(model_parameters, **kwargs)
else:
optimizer = dict(optimizer) # copy
optimizer["init_args"].update(kwargs)
optimizer = instantiate_class(model_parameters, optimizer)
return optimizer
def extend_checkpoint_dir(checkpoint_dir: Path) -> Path:
new_checkpoint_dir = "checkpoints" / checkpoint_dir
should_return_new_dir = (
not checkpoint_dir.is_dir()
and checkpoint_dir.parts[0] != "checkpoints"
and not checkpoint_dir.is_absolute()
and new_checkpoint_dir.exists()
)
return new_checkpoint_dir if should_return_new_dir else checkpoint_dir
|