|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Optional, Union |
|
|
|
import torch |
|
|
|
|
|
class Tokenizer: |
|
def __init__(self, checkpoint_dir: Union[Path, str]) -> None: |
|
checkpoint_dir = Path(checkpoint_dir) |
|
if not checkpoint_dir.exists(): |
|
raise NotADirectoryError( |
|
f"The checkpoint directory does not exist: {str(checkpoint_dir)}" |
|
) |
|
|
|
self.use_bos = self.check_if_bos_token_used(checkpoint_dir) |
|
self.bos_id = None |
|
self.eos_id = None |
|
|
|
|
|
if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file(): |
|
from tokenizers import Tokenizer as HFTokenizer |
|
|
|
self.processor = HFTokenizer.from_file(str(vocabulary_path)) |
|
self.backend = "huggingface" |
|
|
|
if ( |
|
special_tokens_path := checkpoint_dir / "tokenizer_config.json" |
|
).is_file(): |
|
with open(special_tokens_path, encoding="utf-8") as fp: |
|
config = json.load(fp) |
|
bos_token = config.get("bos_token") |
|
eos_token = config.get("eos_token") |
|
if bos_token is not None and isinstance(bos_token, dict): |
|
bos_token = bos_token.get("content") |
|
if eos_token is not None and isinstance(eos_token, dict): |
|
eos_token = eos_token.get("content") |
|
self.bos_id = ( |
|
self.token_to_id(bos_token) if bos_token is not None else None |
|
) |
|
self.eos_id = ( |
|
self.token_to_id(eos_token) if eos_token is not None else None |
|
) |
|
if ( |
|
special_tokens_path := checkpoint_dir / "generation_config.json" |
|
).is_file(): |
|
with open(special_tokens_path, encoding="utf-8") as fp: |
|
config = json.load(fp) |
|
if self.bos_id is None: |
|
self.bos_id = config.get("bos_token_id") |
|
if self.eos_id is None: |
|
self.eos_id = config.get("eos_token_id") |
|
|
|
elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file(): |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path)) |
|
self.backend = "sentencepiece" |
|
self.bos_id = self.processor.bos_id() |
|
self.eos_id = self.processor.eos_id() |
|
else: |
|
raise NotImplementedError |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
if self.backend == "huggingface": |
|
return self.processor.get_vocab_size(with_added_tokens=False) |
|
if self.backend == "sentencepiece": |
|
return self.processor.vocab_size() |
|
raise RuntimeError |
|
|
|
def token_to_id(self, token: str) -> int: |
|
if self.backend == "huggingface": |
|
id_ = self.processor.token_to_id(token) |
|
elif self.backend == "sentencepiece": |
|
id_ = self.processor.piece_to_id(token) |
|
else: |
|
raise RuntimeError |
|
if id_ is None: |
|
raise ValueError(f"token {token!r} not found in the collection.") |
|
return id_ |
|
|
|
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool: |
|
if not ( |
|
tokenizer_config_path := checkpoint_dir / "tokenizer_config.json" |
|
).is_file(): |
|
return False |
|
with open(tokenizer_config_path, encoding="utf-8") as fp: |
|
config = json.load(fp) |
|
if "add_bos_token" in config: |
|
return config["add_bos_token"] |
|
|
|
|
|
return config.get("tokenizer_class") == "LlamaTokenizer" |
|
|
|
def encode( |
|
self, |
|
string: str, |
|
device: Optional[torch.device] = None, |
|
bos: Optional[bool] = None, |
|
eos: bool = False, |
|
max_length: int = -1, |
|
) -> torch.Tensor: |
|
if self.backend == "huggingface": |
|
tokens = self.processor.encode(string).ids |
|
elif self.backend == "sentencepiece": |
|
tokens = self.processor.encode(string) |
|
else: |
|
raise RuntimeError |
|
if bos or (bos is None and self.use_bos): |
|
bos_id = self.bos_id |
|
if bos_id is None: |
|
raise NotImplementedError( |
|
"This tokenizer does not have a defined a bos token" |
|
) |
|
if tokens[0] != bos_id: |
|
tokens = [bos_id] + tokens |
|
if tokens is None: |
|
raise ValueError("`tokens` is None") |
|
|
|
if eos and (not tokens or tokens[-1] != self.eos_id): |
|
tokens = tokens + [self.eos_id] |
|
if max_length > 0: |
|
tokens = tokens[:max_length] |
|
return torch.tensor(tokens, dtype=torch.int, device=device) |
|
|
|
def decode(self, tensor: torch.Tensor) -> str: |
|
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist() |
|
return self.processor.decode(tokens) |
|
|