mlabonne's picture
Update app.py
fab1822 verified
raw
history blame
6.12 kB
import gradio as gr
from huggingface_hub import ModelCard, HfApi
import requests
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from collections import defaultdict
from networkx.drawing.nx_pydot import graphviz_layout
from io import BytesIO
from PIL import Image
TITLE = """
<div align="center">
<p style="font-size: 36px;">🌳 Merge Family Tree</p>
</div><br/>
<p>Automatically calculate the family tree of a given model. It also displays the type of license each model uses (permissive, noncommercial, or unknown).</p>
"""
def get_model_names_from_yaml(url):
"""Get a list of parent model names from the yaml file."""
model_tags = []
response = requests.get(url)
if response.status_code == 200:
model_tags.extend([item for item in response.content if '/' in str(item)])
return model_tags
def get_license_color(model):
"""Get the color of the model based on its license."""
try:
card = ModelCard.load(model)
license = card.data.to_dict()['license'].lower()
# Define permissive licenses
permissive_licenses = ['mit', 'bsd', 'apache-2.0', 'openrail'] # Add more as needed
# Check license type
if any(perm_license in license for perm_license in permissive_licenses):
return 'lightgreen' # Permissive licenses
else:
return 'lightcoral' # Noncommercial or other licenses
except Exception as e:
print(f"Error retrieving license for {model}: {e}")
return 'lightgray'
def get_model_names(model, genealogy, found_models=None):
"""Get a list of parent model names from the model id."""
model_tags = []
if found_models is None:
found_models = []
try:
card = ModelCard.load(model)
card_dict = card.data.to_dict() # Convert the ModelCard object to a dictionary
license = card_dict['license']
# Check the base_model in metadata
if 'base_model' in card_dict:
model_tags = card_dict['base_model']
# Check the tags in metadata
if 'tags' in card_dict and not model_tags:
tags = card_dict['tags']
model_tags = [model_name for model_name in tags if '/' in model_name]
# Check for merge.yml and mergekit_config.yml if no model_tags found in the tags
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/merge.yml"))
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/mergekit_config.yml"))
# Convert to a list if tags is not None or empty, else set to an empty list
if not isinstance(model_tags, list):
model_tags = [model_tags] if model_tags else []
# Add found model names to the list
found_models.extend(model_tags)
# Record the genealogy
for model_tag in model_tags:
genealogy[model_tag].append(model)
# Recursively check for more models
for model_tag in model_tags:
get_model_names(model_tag, genealogy, found_models)
except Exception as e:
print(f"Could not find model names for {model}: {e}")
return found_models
def find_root_nodes(G):
""" Find all nodes in the graph with no predecessors """
return [n for n, d in G.in_degree() if d == 0]
def max_width_of_tree(G):
""" Calculate the maximum width of the tree """
max_width = 0
for root in find_root_nodes(G):
width_at_depth = calculate_width_at_depth(G, root)
local_max_width = max(width_at_depth.values())
max_width = max(max_width, local_max_width)
return max_width
def calculate_width_at_depth(G, root):
""" Calculate width at each depth starting from a given root """
depth_count = defaultdict(int)
queue = [(root, 0)]
while queue:
node, depth = queue.pop(0)
depth_count[depth] += 1
for child in G.successors(node):
queue.append((child, depth + 1))
return depth_count
def create_family_tree(start_model):
genealogy = defaultdict(list)
get_model_names(start_model, genealogy) # Assuming this populates the genealogy
# Create a directed graph
G = nx.DiGraph()
# Add nodes and edges to the graph
for parent, children in genealogy.items():
for child in children:
G.add_edge(parent, child)
# Get max depth
max_depth = nx.dag_longest_path_length(G) + 1
# Get max width
max_width = max_width_of_tree(G) + 1
# Estimate plot size
height = max(8, 1.6 * max_depth)
width = max(8, 6 * max_width)
# Set Graphviz layout attributes for a bottom-up tree
plt.figure(figsize=(width, height))
pos = graphviz_layout(G, prog="dot")
# Determine node colors based on license
node_colors = [get_license_color(node) for node in G.nodes()]
# Create a label mapping with line breaks
labels = {node: node.replace("/", "\n") for node in G.nodes()}
# Draw the graph
nx.draw(G, pos, labels=labels, with_labels=True, node_color=node_colors, font_size=12, node_size=8_000, edge_color='black')
# Create a legend for the colors
legend_elements = [
Patch(facecolor='lightgreen', label='Permissive'),
Patch(facecolor='lightcoral', label='Noncommercial'),
Patch(facecolor='lightgray', label='Unknown')
]
plt.legend(handles=legend_elements, loc='upper left')
plt.title(f"{start_model}'s Family Tree", fontsize=20)
# Capture the plot as an image in memory
img_buffer = BytesIO()
plt.savefig(img_buffer, format='png', bbox_inches='tight')
plt.close()
img_buffer.seek(0)
# Open the image using PIL
img = Image.open(img_buffer)
return img
with gr.Blocks() as demo:
gr.Markdown(TITLE)
model_id = gr.Textbox(label="Model ID", value="mlabonne/NeuralBeagle-7B")
btn = gr.Button("Create tree")
out = gr.Image()
btn.click(fn=create_family_tree, inputs=model_id, outputs=out)
demo.launch()