Spaces:
Running
Running
import gradio as gr | |
import websockets | |
import asyncio | |
import json | |
import base64 | |
async def process_audio_stream(audio_path, max_tokens): | |
""" | |
Process audio with streaming response via WebSocket | |
""" | |
if not audio_path: | |
yield "Please upload or record an audio file first." | |
return | |
try: | |
# Read audio file and convert to base64 bytes | |
with open(audio_path, 'rb') as f: | |
audio_bytes = f.read() | |
base64_bytes = base64.b64encode(audio_bytes) | |
# Connect to WebSocket | |
async with websockets.connect('wss://nexa-omni.nexa4ai.com/ws/process-audio/') as websocket: | |
# Send binary base64 audio data as bytes | |
await websocket.send(base64_bytes) # Send the raw base64 bytes | |
# Send parameters as JSON string | |
await websocket.send(json.dumps({ | |
"prompt": "", | |
"max_tokens": max_tokens | |
})) | |
# Initialize response | |
response = "" | |
# Receive streaming response | |
async for message in websocket: | |
try: | |
data = json.loads(message) | |
if data["status"] == "generating": | |
response += data["token"] | |
yield response | |
elif data["status"] == "complete": | |
break | |
elif data["status"] == "error": | |
yield f"Error: {data['error']}" | |
break | |
except json.JSONDecodeError: | |
continue | |
except Exception as e: | |
yield f"Error connecting to server: {str(e)}" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=process_audio_stream, | |
inputs=[ | |
gr.Audio( | |
type="filepath", | |
label="Upload or Record Audio", | |
sources=["upload", "microphone"] | |
), | |
gr.Slider( | |
minimum=50, | |
maximum=200, | |
value=50, | |
step=1, | |
label="Max Tokens" | |
) | |
], | |
outputs=gr.Textbox(label="Response", interactive=False), | |
title="NEXA OmniAudio-2.6B", | |
description=f""" | |
Model Repo: <a href="https://huggingface.co/NexaAIDev/OmniAudio-2.6B">NexaAIDev/OmniAudio-2.6B</a> | |
Blog: <a href="https://nexa.ai/blogs/OmniAudio-2.6B">OmniAudio-2.6B Blog</a> | |
Upload an audio file and optionally provide a prompt to analyze the audio content.""", | |
examples=[ | |
["example_audios/voice_qa.mp3", 200], | |
["example_audios/voice_in_conversation.mp3", 200], | |
["example_audios/creative_content_generation.mp3", 200], | |
["example_audios/record_summmary.mp3", 200], | |
["example_audios/change_tone.mp3", 200], | |
] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860) | |