File size: 6,998 Bytes
755aa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6239abf
755aa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b94f14
 
 
 
 
 
 
 
 
 
 
 
755aa6f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import torch
from diffusers import AutoPipelineForInpainting
from PIL import Image
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BlipForConditionalGeneration,
    BlipProcessor,
    OwlViTForObjectDetection,
    OwlViTProcessor,
    SamModel,
    SamProcessor,
)


def delete_model(model):
    model.to("cpu")
    del model
    torch.cuda.empty_cache()


def run_language_model(edit_prompt, device):
    language_model_id = "Qwen/Qwen1.5-0.5B-Chat"
    language_model = AutoModelForCausalLM.from_pretrained(
        language_model_id, device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(language_model_id)
    messages = [
        {
            "role": "system",
            "content": "Follow the examples and return the expected output",
        },
        {"role": "user", "content": "swap mountain and lion"},  # example 1
        {"role": "assistant", "content": "mountain, lion"},  # example 1
        {"role": "user", "content": "change the dog with cat"},  # example 2
        {"role": "assistant", "content": "dog, cat"},  # example 2
        {"role": "user", "content": "replace the human with a boat"},  # example 3
        {"role": "assistant", "content": "human, boat"},  # example 3
        {"role": "user", "content": edit_prompt},
    ]
    text = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
    generated_ids = language_model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [
        output_ids[len(input_ids) :]
        for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    to_replace, replace_with = response.split(", ")

    delete_model(language_model)
    return (to_replace, replace_with)


def run_image_captioner(image, device):
    caption_model_id = "Salesforce/blip-image-captioning-base"
    caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_id).to(
        device
    )
    caption_processor = BlipProcessor.from_pretrained(caption_model_id)
    inputs = caption_processor(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = caption_model.generate(**inputs, max_new_tokens=200)
    caption = caption_processor.decode(outputs[0], skip_special_tokens=True)

    delete_model(caption_model)
    return caption


def run_segmentation(image, object_to_segment, device):
    # OWL-ViT for object detection
    owl_vit_model_id = "google/owlvit-base-patch32"
    processor = OwlViTProcessor.from_pretrained(owl_vit_model_id)
    od_model = OwlViTForObjectDetection.from_pretrained(owl_vit_model_id).to(device)
    text_queries = [object_to_segment]
    inputs = processor(text=text_queries, images=image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = od_model(**inputs)
        target_sizes = torch.tensor([image.size]).to(device)
        results = processor.post_process_object_detection(
            outputs, threshold=0.1, target_sizes=target_sizes
        )[0]

    boxes = results["boxes"].tolist()

    delete_model(od_model)

    # SAM for image segmentation
    sam_model_id = "facebook/sam-vit-base"
    seg_model = SamModel.from_pretrained(sam_model_id).to(device)
    processor = SamProcessor.from_pretrained(sam_model_id)
    input_boxes = [boxes]
    inputs = processor(image, input_boxes=input_boxes, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = seg_model(**inputs)
    masks = processor.image_processor.post_process_masks(
        outputs.pred_masks.cpu(),
        inputs["original_sizes"].cpu(),
        inputs["reshaped_input_sizes"].cpu(),
    )

    delete_model(seg_model)
    return masks


def run_inpainting(image, replaced_caption, masks, device):
    pipeline = AutoPipelineForInpainting.from_pretrained(
        "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
        torch_dtype=torch.float16,
        variant="fp16",
    ).to(device)

    prompt = replaced_caption
    negative_prompt = """lowres, bad anatomy, bad hands,
    text, error, missing fingers, extra digit, fewer digits,
    cropped, worst quality, low quality"""

    output = pipeline(
        prompt=prompt,
        image=image,
        mask_image=Image.fromarray(masks[0][0][0, :, :].numpy()),
        negative_prompt=negative_prompt,
        guidance_scale=7.5,
        strength=0.6,
    ).images[0]

    delete_model(pipeline)
    return output


def run_open_gen_fill(image, edit_prompt):
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Resize the image to (512, 512)
    image = image.resize((512, 512))

    # Run the langauge model to extract the objects to be swapped from
    # the edit prompt
    to_replace, replace_with = run_language_model(
        edit_prompt=edit_prompt, device=device
    )

    # Caption the input image
    caption = run_image_captioner(image, device=device)

    # Replace the object in the caption with the new object
    replaced_caption = caption.replace(to_replace, replace_with)

    # Segment the `to_replace` object from the input image
    masks = run_segmentation(image, to_replace, device=device)

    # Diffusion pipeline for inpainting
    return run_inpainting(
        image=image, replaced_caption=replaced_caption, masks=masks, device=device
    )


def setup_gradio_interface():
    block = gr.Blocks()

    with block:
        gr.Markdown("<h1><center>Open Generative Fill V1<h1><center>")

        with gr.Row():
            with gr.Column():
                input_image_placeholder = gr.Image(type="pil", label="Input Image")
                edit_prompt_placeholder = gr.Textbox(label="Enter the editing prompt")
                run_button_placeholder = gr.Button(value="Run")

            with gr.Column():
                output_image_placeholder = gr.Image(type="pil", label="Output Image")

        run_button_placeholder.click(
            fn=lambda image, edit_prompt: run_open_gen_fill(
                image=image,
                edit_prompt=edit_prompt,
            ),
            inputs=[input_image_placeholder, edit_prompt_placeholder],
            outputs=[output_image_placeholder],
        )

        gr.Examples(
            examples=[["dog.jpeg", "replace the dog with a tiger"]],
            inputs=[input_image_placeholder, edit_prompt_placeholder],
            outputs=[output_image_placeholder],
            fn=lambda image, edit_prompt: run_open_gen_fill(
                image=image,
                edit_prompt=edit_prompt,
            ),
            cache_examples=True,
            label="Try this example input!",
        )

    return block


if __name__ == "__main__":
    gradio_interface = setup_gradio_interface()
    gradio_interface.queue(max_size=5)
    gradio_interface.launch(share=False, show_api=False, show_error=True)