import gradio as gr import torch import numpy as np from diffusers import DiffusionPipeline from transformers import pipeline pipe = pipeline('text-generation', model='daspartho/prompt-extend') def extend_prompt(prompt): return pipe(prompt+',', num_return_sequences=1)[0]["generated_text"] def text_it(inputs): return extend_prompt(inputs) def load_pipeline(use_cuda): device = "cuda" if use_cuda and torch.cuda.is_available() else "cpu" if device == "cuda": torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) return pipe def genie(prompt="sexy woman", use_details=True,steps=2, seed=398231747038484200, use_cuda=False): pipe = load_pipeline(use_cuda) generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) if use_details: extended_prompt = extend_prompt(prompt) else: extended_prompt=prompt int_image = pipe(prompt=extended_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0] return int_image, extended_prompt # Custom HTML for the interface html_code = '''

Stable Diffusion Turbo with GPT

''' with gr.Blocks() as myface: gr.HTML(html_code) # Add the custom HTML with gr.Row(): input_text = gr.Textbox(label='Text prompt.', lines=1) with gr.Row(): details_checkbox = gr.Checkbox(label="details", info="Generate Details?") steps_slider = gr.Slider(1, maximum=5, value=2, step=1, label='Number of Iterations') seed_slider = gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=False, value=398231747038484200) cuda_checkbox = gr.Checkbox(label="cuda", info="Do you have cuda?") with gr.Row(): generate_button = gr.Button("Generate") with gr.Row(): output_image1 = gr.Image() output_image2 = gr.Image() with gr.Row(): output_text1 = gr.Textbox(label="Generated Text", lines=2) output_text2 = gr.Textbox(label="Generated Text", lines=2) with gr.Row(): output_image3 = gr.Image() output_image4 = gr.Image() with gr.Row(): output_text3 = gr.Textbox(label="Generated Text", lines=2) output_text4 = gr.Textbox(label="Generated Text", lines=2) generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image1, output_text1], concurrency_limit=10) generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image2, output_text2], concurrency_limit=10) generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image3, output_text3], concurrency_limit=10) generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image4, output_text4], concurrency_limit=10) myface.launch(inline=True, show_api=False, max_threads=200)