Nuno Tome
Create app.py
eac9ed5 verified
raw
history blame
2.82 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
MODEL_1 = "google/vit-base-patch16-224"
MIN_ACEPTABLE_SCORE = 0.1
MAX_N_LABELS = 5
MODEL_2 = "nateraw/vit-age-classifier"
MODELS = [
"google/vit-base-patch16-224", #Classifição geral
"nateraw/vit-age-classifier", #Classifição de idade
"microsoft/resnet-50", #Classifição geral
#NOT OK "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral
"Falconsai/nsfw_image_detection", #Classifição NSFW
"cafeai/cafe_aesthetic", #Classifição de estética
"timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k", #Classifição geral
"timm/vit_base_patch16_224_in21k", #Classifição geral escolhida pelo copilot
"microsoft/resnet-18", #Classifição geral
"microsoft/resnet-34", #Classifição geral escolhida pelo copilot
"microsoft/resnet-101", #Classifição geral escolhida pelo copilot
"microsoft/resnet-152", #Classifição geral escolhida pelo copilot
"microsoft/resnet-50-kinetics-400", #Classifição geral escolhida pelo copilot
"microsoft/swin-tiny-patch4-window7-224",#Classifição geral
""
]
def classify(image, model):
classifier = pipeline("image-classification", model=model)
result= classifier(image)
return result
def save_result(result):
st.write("In the future, this function will save the result in a database.")
def print_result(result):
comulative_discarded_score = 0
for i in range(len(result)):
if result[i]['score'] < MIN_ACEPTABLE_SCORE:
comulative_discarded_score += result[i]['score']
else:
st.write(result[i]['label'])
st.progress(result[i]['score'])
st.write(result[i]['score'])
st.write(f"comulative_discarded_score:")
st.progress(comulative_discarded_score)
st.write(comulative_discarded_score)
def main():
st.title("Image Classification")
input_image = st.file_uploader("Upload Image")
shosen_model = st.selectbox("Select the model to use", MODELS)
if input_image is not None:
image_to_classify = Image.open(input_image)
st.image(image_to_classify, caption="Uploaded Image", use_column_width=True)
if st.button("Classify"):
image_to_classify = Image.open(input_image)
classification_obj1 =[]
avable_models = st.selectbox
classification_result = classify(image_to_classify, shosen_model)
classification_obj1.append(classification_result)
print_result(classification_result)
save_result(classification_result)
if __name__ == "__main__":
main()