stable-fast-3d / sf3d /system.py
mboss's picture
Revert "Fix HF spaces"
1b100ca
raw
history blame
18.3 kB
import os
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from jaxtyping import Float
from omegaconf import OmegaConf
from PIL import Image
from safetensors.torch import load_model
from torch import Tensor
from sf3d.models.isosurface import MarchingTetrahedraHelper
from sf3d.models.mesh import Mesh
from sf3d.models.utils import (
BaseModule,
ImageProcessor,
convert_data,
dilate_fill,
dot,
find_class,
float32_to_uint8_np,
normalize,
scale_tensor,
)
from sf3d.utils import create_intrinsic_from_fov_deg, default_cond_c2w
from .texture_baker import TextureBaker
class SF3D(BaseModule):
@dataclass
class Config(BaseModule.Config):
cond_image_size: int
isosurface_resolution: int
isosurface_threshold: float = 10.0
radius: float = 1.0
background_color: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
default_fovy_deg: float = 40.0
default_distance: float = 1.6
camera_embedder_cls: str = ""
camera_embedder: dict = field(default_factory=dict)
image_tokenizer_cls: str = ""
image_tokenizer: dict = field(default_factory=dict)
tokenizer_cls: str = ""
tokenizer: dict = field(default_factory=dict)
backbone_cls: str = ""
backbone: dict = field(default_factory=dict)
post_processor_cls: str = ""
post_processor: dict = field(default_factory=dict)
decoder_cls: str = ""
decoder: dict = field(default_factory=dict)
image_estimator_cls: str = ""
image_estimator: dict = field(default_factory=dict)
global_estimator_cls: str = ""
global_estimator: dict = field(default_factory=dict)
cfg: Config
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: str, config_name: str, weight_name: str
):
if os.path.isdir(pretrained_model_name_or_path):
config_path = os.path.join(pretrained_model_name_or_path, config_name)
weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
else:
config_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=config_name
)
weight_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=weight_name
)
cfg = OmegaConf.load(config_path)
OmegaConf.resolve(cfg)
model = cls(cfg)
load_model(model, weight_path)
return model
@property
def device(self):
return next(self.parameters()).device
def configure(self):
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
self.cfg.image_tokenizer
)
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
self.cfg.camera_embedder
)
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
self.post_processor = find_class(self.cfg.post_processor_cls)(
self.cfg.post_processor
)
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
self.image_estimator = find_class(self.cfg.image_estimator_cls)(
self.cfg.image_estimator
)
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
self.cfg.global_estimator
)
self.bbox: Float[Tensor, "2 3"]
self.register_buffer(
"bbox",
torch.as_tensor(
[
[-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
[self.cfg.radius, self.cfg.radius, self.cfg.radius],
],
dtype=torch.float32,
),
)
self.isosurface_helper = MarchingTetrahedraHelper(
self.cfg.isosurface_resolution,
os.path.join(
os.path.dirname(__file__),
"..",
"load",
"tets",
f"{self.cfg.isosurface_resolution}_tets.npz",
),
)
self.baker = TextureBaker()
self.image_processor = ImageProcessor()
def triplane_to_meshes(
self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
) -> list[Mesh]:
meshes = []
for i in range(triplanes.shape[0]):
triplane = triplanes[i]
grid_vertices = scale_tensor(
self.isosurface_helper.grid_vertices.to(triplanes.device),
self.isosurface_helper.points_range,
self.bbox,
)
values = self.query_triplane(grid_vertices, triplane)
decoded = self.decoder(values, include=["vertex_offset", "density"])
sdf = decoded["density"] - self.cfg.isosurface_threshold
deform = decoded["vertex_offset"].squeeze(0)
mesh: Mesh = self.isosurface_helper(
sdf.view(-1, 1), deform.view(-1, 3) if deform is not None else None
)
mesh.v_pos = scale_tensor(
mesh.v_pos, self.isosurface_helper.points_range, self.bbox
)
meshes.append(mesh)
return meshes
def query_triplane(
self,
positions: Float[Tensor, "*B N 3"],
triplanes: Float[Tensor, "*B 3 Cp Hp Wp"],
) -> Float[Tensor, "*B N F"]:
batched = positions.ndim == 3
if not batched:
# no batch dimension
triplanes = triplanes[None, ...]
positions = positions[None, ...]
assert triplanes.ndim == 5 and positions.ndim == 3
positions = scale_tensor(
positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
)
indices2D: Float[Tensor, "B 3 N 2"] = torch.stack(
(positions[..., [0, 1]], positions[..., [0, 2]], positions[..., [1, 2]]),
dim=-3,
).to(triplanes.dtype)
out: Float[Tensor, "B3 Cp 1 N"] = F.grid_sample(
rearrange(triplanes, "B Np Cp Hp Wp -> (B Np) Cp Hp Wp", Np=3).float(),
rearrange(indices2D, "B Np N Nd -> (B Np) () N Nd", Np=3).float(),
align_corners=True,
mode="bilinear",
)
out = rearrange(out, "(B Np) Cp () N -> B N (Np Cp)", Np=3)
return out
def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
# if batch[rgb_cond] is only one view, add a view dimension
if len(batch["rgb_cond"].shape) == 4:
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)
batch_size, n_input_views = batch["rgb_cond"].shape[:2]
camera_embeds: Optional[Float[Tensor, "B Nv Cc"]]
camera_embeds = self.camera_embedder(**batch)
input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.image_tokenizer(
rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
modulation_cond=camera_embeds,
)
input_image_tokens = rearrange(
input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
)
tokens: Float[Tensor, "B Ct Nt"] = self.tokenizer(batch_size)
tokens = self.backbone(
tokens,
encoder_hidden_states=input_image_tokens,
modulation_cond=None,
)
direct_codes = self.tokenizer.detokenize(tokens)
scene_codes = self.post_processor(direct_codes)
return scene_codes, direct_codes
def run_image(
self,
image: Image,
bake_resolution: int,
estimate_illumination: bool = False,
) -> Tuple[trimesh.Trimesh, dict[str, Any]]:
if image.mode != "RGBA":
raise ValueError("Image must be in RGBA mode")
img_cond = (
torch.from_numpy(
np.asarray(
image.resize((self.cfg.cond_image_size, self.cfg.cond_image_size))
).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
.to(self.device)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(self.cfg.background_color, device=self.device)[None, None, :],
img_cond[:, :, :3],
mask_cond,
)
c2w_cond = default_cond_c2w(self.cfg.default_distance).to(self.device)
intrinsic, intrinsic_normed_cond = create_intrinsic_from_fov_deg(
self.cfg.default_fovy_deg,
self.cfg.cond_image_size,
self.cfg.cond_image_size,
)
batch = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.to(self.device).unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.to(self.device).unsqueeze(0),
}
meshes, global_dict = self.generate_mesh(
batch, bake_resolution, estimate_illumination
)
return meshes[0], global_dict
def generate_mesh(
self,
batch,
bake_resolution: int,
estimate_illumination: bool = False,
) -> Tuple[List[trimesh.Trimesh], dict[str, Any]]:
batch["rgb_cond"] = self.image_processor(
batch["rgb_cond"], self.cfg.cond_image_size
)
batch["mask_cond"] = self.image_processor(
batch["mask_cond"], self.cfg.cond_image_size
)
scene_codes, non_postprocessed_codes = self.get_scene_codes(batch)
global_dict = {}
if self.image_estimator is not None:
global_dict.update(
self.image_estimator(batch["rgb_cond"] * batch["mask_cond"])
)
if self.global_estimator is not None and estimate_illumination:
global_dict.update(self.global_estimator(non_postprocessed_codes))
with torch.no_grad():
with torch.autocast(device_type="cuda", enabled=False):
meshes = self.triplane_to_meshes(scene_codes)
rets = []
for i, mesh in enumerate(meshes):
# Check for empty mesh
if mesh.v_pos.shape[0] == 0:
rets.append(trimesh.Trimesh())
continue
mesh.unwrap_uv()
# Build textures
rast = self.baker.rasterize(
mesh.v_tex, mesh.t_pos_idx, bake_resolution
)
bake_mask = self.baker.get_mask(rast)
pos_bake = self.baker.interpolate(
mesh.v_pos,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_pos = pos_bake[bake_mask]
tri_query = self.query_triplane(gb_pos, scene_codes[i])[0]
decoded = self.decoder(
tri_query, exclude=["density", "vertex_offset"]
)
nrm = self.baker.interpolate(
mesh.v_nrm,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_nrm = F.normalize(nrm[bake_mask], dim=-1)
decoded["normal"] = gb_nrm
# Check if any keys in global_dict start with decoded_
for k, v in global_dict.items():
if k.startswith("decoder_"):
decoded[k.replace("decoder_", "")] = v[i]
mat_out = {
"albedo": decoded["features"],
"roughness": decoded["roughness"],
"metallic": decoded["metallic"],
"normal": normalize(decoded["perturb_normal"]),
"bump": None,
}
for k, v in mat_out.items():
if v is None:
continue
if v.shape[0] == 1:
# Skip and directly add a single value
mat_out[k] = v[0]
else:
f = torch.zeros(
bake_resolution,
bake_resolution,
v.shape[-1],
dtype=v.dtype,
device=v.device,
)
if v.shape == f.shape:
continue
if k == "normal":
# Use un-normalized tangents here so that larger smaller tris
# Don't effect the tangents that much
tng = self.baker.interpolate(
mesh.v_tng,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_tng = tng[bake_mask]
gb_tng = F.normalize(gb_tng, dim=-1)
gb_btng = F.normalize(
torch.cross(gb_tng, gb_nrm, dim=-1), dim=-1
)
normal = F.normalize(mat_out["normal"], dim=-1)
bump = torch.cat(
# Check if we have to flip some things
(
dot(normal, gb_tng),
dot(normal, gb_btng),
dot(normal, gb_nrm).clip(
0.3, 1
), # Never go below 0.3. This would indicate a flipped (or close to one) normal
),
-1,
)
bump = (bump * 0.5 + 0.5).clamp(0, 1)
f[bake_mask] = bump.view(-1, 3)
mat_out["bump"] = f
else:
f[bake_mask] = v.view(-1, v.shape[-1])
mat_out[k] = f
def uv_padding(arr):
if arr.ndim == 1:
return arr
return (
dilate_fill(
arr.permute(2, 0, 1)[None, ...],
bake_mask.unsqueeze(0).unsqueeze(0),
iterations=bake_resolution // 150,
)
.squeeze(0)
.permute(1, 2, 0)
)
verts_np = convert_data(mesh.v_pos)
faces = convert_data(mesh.t_pos_idx)
uvs = convert_data(mesh.v_tex)
basecolor_tex = Image.fromarray(
float32_to_uint8_np(convert_data(uv_padding(mat_out["albedo"])))
).convert("RGB")
basecolor_tex.format = "JPEG"
metallic = mat_out["metallic"].squeeze().cpu().item()
roughness = mat_out["roughness"].squeeze().cpu().item()
if "bump" in mat_out and mat_out["bump"] is not None:
bump_np = convert_data(uv_padding(mat_out["bump"]))
bump_up = np.ones_like(bump_np)
bump_up[..., :2] = 0.5
bump_up[..., 2:] = 1
bump_tex = Image.fromarray(
float32_to_uint8_np(
bump_np,
dither=True,
# Do not dither if something is perfectly flat
dither_mask=np.all(
bump_np == bump_up, axis=-1, keepdims=True
).astype(np.float32),
)
).convert("RGB")
bump_tex.format = (
"JPEG" # PNG would be better but the assets are larger
)
else:
bump_tex = None
material = trimesh.visual.material.PBRMaterial(
baseColorTexture=basecolor_tex,
roughnessFactor=roughness,
metallicFactor=metallic,
normalTexture=bump_tex,
)
tmesh = trimesh.Trimesh(
vertices=verts_np,
faces=faces,
visual=trimesh.visual.texture.TextureVisuals(
uv=uvs, material=material
),
)
rot = trimesh.transformations.rotation_matrix(
np.radians(-90), [1, 0, 0]
)
tmesh.apply_transform(rot)
tmesh.apply_transform(
trimesh.transformations.rotation_matrix(
np.radians(90), [0, 1, 0]
)
)
tmesh.invert()
rets.append(tmesh)
return rets, global_dict