|
import logging |
|
import math |
|
from inspect import isfunction |
|
from typing import Any, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from packaging import version |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
logpy = logging.getLogger(__name__) |
|
|
|
if version.parse(torch.__version__) >= version.parse("2.0.0"): |
|
SDP_IS_AVAILABLE = True |
|
from torch.backends.cuda import SDPBackend, sdp_kernel |
|
|
|
BACKEND_MAP = { |
|
SDPBackend.MATH: { |
|
"enable_math": True, |
|
"enable_flash": False, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.FLASH_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": True, |
|
"enable_mem_efficient": False, |
|
}, |
|
SDPBackend.EFFICIENT_ATTENTION: { |
|
"enable_math": False, |
|
"enable_flash": False, |
|
"enable_mem_efficient": True, |
|
}, |
|
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True}, |
|
} |
|
else: |
|
from contextlib import nullcontext |
|
|
|
SDP_IS_AVAILABLE = False |
|
sdp_kernel = nullcontext |
|
BACKEND_MAP = {} |
|
logpy.warn( |
|
f"No SDP backend available, likely because you are running in pytorch " |
|
f"versions < 2.0. In fact, you are using PyTorch {torch.__version__}. " |
|
f"You might want to consider upgrading." |
|
) |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
|
|
XFORMERS_IS_AVAILABLE = True |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
logpy.warn("no module 'xformers'. Processing without...") |
|
|
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return {el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
def __init__(self, dim, heads=4, dim_head=32): |
|
super().__init__() |
|
self.heads = heads |
|
hidden_dim = dim_head * heads |
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange( |
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 |
|
) |
|
k = k.softmax(dim=-1) |
|
context = torch.einsum("bhdn,bhen->bhde", k, v) |
|
out = torch.einsum("bhde,bhdn->bhen", context, q) |
|
out = rearrange( |
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
ATTENTION_MODES = ("xformers", "torch", "math") |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_scale: Optional[float] = None, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
attn_mode: str = "xformers", |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
assert attn_mode in self.ATTENTION_MODES |
|
self.attn_mode = attn_mode |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, L, C = x.shape |
|
|
|
qkv = self.qkv(x) |
|
if self.attn_mode == "torch": |
|
qkv = rearrange( |
|
qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads |
|
).float() |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
x = rearrange(x, "B H L D -> B L (H D)") |
|
elif self.attn_mode == "xformers": |
|
qkv = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
x = xformers.ops.memory_efficient_attention(q, k, v) |
|
x = rearrange(x, "B L H D -> B L (H D)", H=self.num_heads) |
|
elif self.attn_mode == "math": |
|
qkv = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v).transpose(1, 2).reshape(B, L, C) |
|
else: |
|
raise NotImplemented |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b (h w) c") |
|
k = rearrange(k, "b c h w -> b c (h w)") |
|
w_ = torch.einsum("bij,bjk->bik", q, k) |
|
|
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = rearrange(v, "b c h w -> b c (h w)") |
|
w_ = rearrange(w_, "b i j -> b j i") |
|
h_ = torch.einsum("bij,bjk->bik", v, w_) |
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
query_dim, |
|
context_dim=None, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0, |
|
backend=None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
self.backend = backend |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
additional_tokens=None, |
|
n_times_crossframe_attn_in_self=0, |
|
): |
|
h = self.heads |
|
|
|
if additional_tokens is not None: |
|
|
|
n_tokens_to_mask = additional_tokens.shape[1] |
|
|
|
x = torch.cat([additional_tokens, x], dim=1) |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
|
|
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 |
|
n_cp = x.shape[0] // n_times_crossframe_attn_in_self |
|
k = repeat( |
|
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp |
|
) |
|
v = repeat( |
|
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp |
|
) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) |
|
|
|
|
|
""" |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
del q, k |
|
|
|
if exists(mask): |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
# attention, what we cannot get enough of |
|
sim = sim.softmax(dim=-1) |
|
|
|
out = einsum('b i j, b j d -> b i d', sim, v) |
|
""" |
|
|
|
with sdp_kernel(**BACKEND_MAP[self.backend]): |
|
|
|
out = F.scaled_dot_product_attention( |
|
q, k, v, attn_mask=mask |
|
) |
|
|
|
del q, k, v |
|
out = rearrange(out, "b h n d -> b n (h d)", h=h) |
|
|
|
if additional_tokens is not None: |
|
|
|
out = out[:, n_tokens_to_mask:] |
|
return self.to_out(out) |
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__( |
|
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs |
|
): |
|
super().__init__() |
|
logpy.debug( |
|
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " |
|
f"context_dim is {context_dim} and using {heads} heads with a " |
|
f"dimension of {dim_head}." |
|
) |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
additional_tokens=None, |
|
n_times_crossframe_attn_in_self=0, |
|
): |
|
if additional_tokens is not None: |
|
|
|
n_tokens_to_mask = additional_tokens.shape[1] |
|
|
|
x = torch.cat([additional_tokens, x], dim=1) |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
|
|
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 |
|
|
|
k = repeat( |
|
k[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
v = repeat( |
|
v[::n_times_crossframe_attn_in_self], |
|
"b ... -> (b n) ...", |
|
n=n_times_crossframe_attn_in_self, |
|
) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
if version.parse(xformers.__version__) >= version.parse("0.0.21"): |
|
|
|
|
|
max_bs = 32768 |
|
N = q.shape[0] |
|
n_batches = math.ceil(N / max_bs) |
|
out = list() |
|
for i_batch in range(n_batches): |
|
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs) |
|
out.append( |
|
xformers.ops.memory_efficient_attention( |
|
q[batch], |
|
k[batch], |
|
v[batch], |
|
attn_bias=None, |
|
op=self.attention_op, |
|
) |
|
) |
|
out = torch.cat(out, 0) |
|
else: |
|
out = xformers.ops.memory_efficient_attention( |
|
q, k, v, attn_bias=None, op=self.attention_op |
|
) |
|
|
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
if additional_tokens is not None: |
|
|
|
out = out[:, n_tokens_to_mask:] |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention, |
|
} |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
disable_self_attn=False, |
|
attn_mode="softmax", |
|
sdp_backend=None, |
|
): |
|
super().__init__() |
|
assert attn_mode in self.ATTENTION_MODES |
|
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE: |
|
logpy.warn( |
|
f"Attention mode '{attn_mode}' is not available. Falling " |
|
f"back to native attention. This is not a problem in " |
|
f"Pytorch >= 2.0. FYI, you are running with PyTorch " |
|
f"version {torch.__version__}." |
|
) |
|
attn_mode = "softmax" |
|
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE: |
|
logpy.warn( |
|
"We do not support vanilla attention anymore, as it is too " |
|
"expensive. Sorry." |
|
) |
|
if not XFORMERS_IS_AVAILABLE: |
|
assert ( |
|
False |
|
), "Please install xformers via e.g. 'pip install xformers==0.0.16'" |
|
else: |
|
logpy.info("Falling back to xformers efficient attention.") |
|
attn_mode = "softmax-xformers" |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
if version.parse(torch.__version__) >= version.parse("2.0.0"): |
|
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend) |
|
else: |
|
assert sdp_backend is None |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = attn_cls( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None, |
|
backend=sdp_backend, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = attn_cls( |
|
query_dim=dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
backend=sdp_backend, |
|
) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
if self.checkpoint: |
|
logpy.debug(f"{self.__class__.__name__} is using checkpointing") |
|
|
|
def forward( |
|
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 |
|
): |
|
kwargs = {"x": x} |
|
|
|
if context is not None: |
|
kwargs.update({"context": context}) |
|
|
|
if additional_tokens is not None: |
|
kwargs.update({"additional_tokens": additional_tokens}) |
|
|
|
if n_times_crossframe_attn_in_self: |
|
kwargs.update( |
|
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self} |
|
) |
|
|
|
|
|
if self.checkpoint: |
|
|
|
return checkpoint(self._forward, x, context) |
|
|
|
else: |
|
return self._forward(**kwargs) |
|
|
|
def _forward( |
|
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 |
|
): |
|
x = ( |
|
self.attn1( |
|
self.norm1(x), |
|
context=context if self.disable_self_attn else None, |
|
additional_tokens=additional_tokens, |
|
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self |
|
if not self.disable_self_attn |
|
else 0, |
|
) |
|
+ x |
|
) |
|
x = ( |
|
self.attn2( |
|
self.norm2(x), context=context, additional_tokens=additional_tokens |
|
) |
|
+ x |
|
) |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class BasicTransformerSingleLayerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention |
|
|
|
} |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
attn_mode="softmax", |
|
): |
|
super().__init__() |
|
assert attn_mode in self.ATTENTION_MODES |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
self.attn1 = attn_cls( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=context_dim, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None): |
|
|
|
|
|
return checkpoint(self._forward, x, context) |
|
|
|
def _forward(self, x, context=None): |
|
x = self.attn1(self.norm1(x), context=context) + x |
|
x = self.ff(self.norm2(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
context_dim=None, |
|
disable_self_attn=False, |
|
use_linear=False, |
|
attn_type="softmax", |
|
use_checkpoint=True, |
|
|
|
sdp_backend=None, |
|
): |
|
super().__init__() |
|
logpy.debug( |
|
f"constructing {self.__class__.__name__} of depth {depth} w/ " |
|
f"{in_channels} channels and {n_heads} heads." |
|
) |
|
|
|
if exists(context_dim) and not isinstance(context_dim, list): |
|
context_dim = [context_dim] |
|
if exists(context_dim) and isinstance(context_dim, list): |
|
if depth != len(context_dim): |
|
logpy.warn( |
|
f"{self.__class__.__name__}: Found context dims " |
|
f"{context_dim} of depth {len(context_dim)}, which does not " |
|
f"match the specified 'depth' of {depth}. Setting context_dim " |
|
f"to {depth * [context_dim[0]]} now." |
|
) |
|
|
|
assert all( |
|
map(lambda x: x == context_dim[0], context_dim) |
|
), "need homogenous context_dim to match depth automatically" |
|
context_dim = depth * [context_dim[0]] |
|
elif context_dim is None: |
|
context_dim = [None] * depth |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
dropout=dropout, |
|
context_dim=context_dim[d], |
|
disable_self_attn=disable_self_attn, |
|
attn_mode=attn_type, |
|
checkpoint=use_checkpoint, |
|
sdp_backend=sdp_backend, |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module( |
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
else: |
|
|
|
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None): |
|
|
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
if i > 0 and len(context) == 1: |
|
i = 0 |
|
x = block(x, context=context[i]) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|
|
class SimpleTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
depth: int, |
|
heads: int, |
|
dim_head: int, |
|
context_dim: Optional[int] = None, |
|
dropout: float = 0.0, |
|
checkpoint: bool = True, |
|
): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
BasicTransformerBlock( |
|
dim, |
|
heads, |
|
dim_head, |
|
dropout=dropout, |
|
context_dim=context_dim, |
|
attn_mode="softmax-xformers", |
|
checkpoint=checkpoint, |
|
) |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
context: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
for layer in self.layers: |
|
x = layer(x, context) |
|
return x |
|
|