|
import logging |
|
from abc import abstractmethod |
|
from typing import Dict, Iterator, Literal, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from torch import einsum |
|
|
|
from .base import AbstractRegularizer, measure_perplexity |
|
|
|
logpy = logging.getLogger(__name__) |
|
|
|
|
|
class AbstractQuantizer(AbstractRegularizer): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
|
|
self.used: Optional[torch.Tensor] |
|
self.re_embed: int |
|
self.unknown_index: Union[Literal["random"], int] |
|
|
|
def remap_to_used(self, inds: torch.Tensor) -> torch.Tensor: |
|
assert self.used is not None, "You need to define used indices for remap" |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( |
|
device=new.device |
|
) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds: torch.Tensor) -> torch.Tensor: |
|
assert self.used is not None, "You need to define used indices for remap" |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
@abstractmethod |
|
def get_codebook_entry( |
|
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None |
|
) -> torch.Tensor: |
|
raise NotImplementedError() |
|
|
|
def get_trainable_parameters(self) -> Iterator[torch.nn.Parameter]: |
|
yield from self.parameters() |
|
|
|
|
|
class GumbelQuantizer(AbstractQuantizer): |
|
""" |
|
credit to @karpathy: |
|
https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) |
|
Gumbel Softmax trick quantizer |
|
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 |
|
https://arxiv.org/abs/1611.01144 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_hiddens: int, |
|
embedding_dim: int, |
|
n_embed: int, |
|
straight_through: bool = True, |
|
kl_weight: float = 5e-4, |
|
temp_init: float = 1.0, |
|
remap: Optional[str] = None, |
|
unknown_index: str = "random", |
|
loss_key: str = "loss/vq", |
|
) -> None: |
|
super().__init__() |
|
|
|
self.loss_key = loss_key |
|
self.embedding_dim = embedding_dim |
|
self.n_embed = n_embed |
|
|
|
self.straight_through = straight_through |
|
self.temperature = temp_init |
|
self.kl_weight = kl_weight |
|
|
|
self.proj = nn.Conv2d(num_hiddens, n_embed, 1) |
|
self.embed = nn.Embedding(n_embed, embedding_dim) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
else: |
|
self.used = None |
|
self.re_embed = n_embed |
|
if unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
else: |
|
assert unknown_index == "random" or isinstance( |
|
unknown_index, int |
|
), "unknown index needs to be 'random', 'extra' or any integer" |
|
self.unknown_index = unknown_index |
|
if self.remap is not None: |
|
logpy.info( |
|
f"Remapping {self.n_embed} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
|
|
def forward( |
|
self, z: torch.Tensor, temp: Optional[float] = None, return_logits: bool = False |
|
) -> Tuple[torch.Tensor, Dict]: |
|
|
|
|
|
hard = self.straight_through if self.training else True |
|
temp = self.temperature if temp is None else temp |
|
out_dict = {} |
|
logits = self.proj(z) |
|
if self.remap is not None: |
|
|
|
full_zeros = torch.zeros_like(logits) |
|
logits = logits[:, self.used, ...] |
|
|
|
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) |
|
if self.remap is not None: |
|
|
|
full_zeros[:, self.used, ...] = soft_one_hot |
|
soft_one_hot = full_zeros |
|
z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) |
|
|
|
|
|
qy = F.softmax(logits, dim=1) |
|
diff = ( |
|
self.kl_weight |
|
* torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() |
|
) |
|
out_dict[self.loss_key] = diff |
|
|
|
ind = soft_one_hot.argmax(dim=1) |
|
out_dict["indices"] = ind |
|
if self.remap is not None: |
|
ind = self.remap_to_used(ind) |
|
|
|
if return_logits: |
|
out_dict["logits"] = logits |
|
|
|
return z_q, out_dict |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
b, h, w, c = shape |
|
assert b * h * w == indices.shape[0] |
|
indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w) |
|
if self.remap is not None: |
|
indices = self.unmap_to_all(indices) |
|
one_hot = ( |
|
F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() |
|
) |
|
z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight) |
|
return z_q |
|
|
|
|
|
class VectorQuantizer(AbstractQuantizer): |
|
""" |
|
____________________________________________ |
|
Discretization bottleneck part of the VQ-VAE. |
|
Inputs: |
|
- n_e : number of embeddings |
|
- e_dim : dimension of embedding |
|
- beta : commitment cost used in loss term, |
|
beta * ||z_e(x)-sg[e]||^2 |
|
_____________________________________________ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_e: int, |
|
e_dim: int, |
|
beta: float = 0.25, |
|
remap: Optional[str] = None, |
|
unknown_index: str = "random", |
|
sane_index_shape: bool = False, |
|
log_perplexity: bool = False, |
|
embedding_weight_norm: bool = False, |
|
loss_key: str = "loss/vq", |
|
): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.loss_key = loss_key |
|
|
|
if not embedding_weight_norm: |
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
else: |
|
self.embedding = torch.nn.utils.weight_norm( |
|
nn.Embedding(self.n_e, self.e_dim), dim=1 |
|
) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
else: |
|
self.used = None |
|
self.re_embed = n_e |
|
if unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
else: |
|
assert unknown_index == "random" or isinstance( |
|
unknown_index, int |
|
), "unknown index needs to be 'random', 'extra' or any integer" |
|
self.unknown_index = unknown_index |
|
if self.remap is not None: |
|
logpy.info( |
|
f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
|
|
self.sane_index_shape = sane_index_shape |
|
self.log_perplexity = log_perplexity |
|
|
|
def forward( |
|
self, |
|
z: torch.Tensor, |
|
) -> Tuple[torch.Tensor, Dict]: |
|
do_reshape = z.ndim == 4 |
|
if do_reshape: |
|
|
|
z = rearrange(z, "b c h w -> b h w c").contiguous() |
|
|
|
else: |
|
assert z.ndim < 4, "No reshaping strategy for inputs > 4 dimensions defined" |
|
z = z.contiguous() |
|
|
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = ( |
|
torch.sum(z_flattened**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 |
|
* torch.einsum( |
|
"bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n") |
|
) |
|
) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
loss_dict = {} |
|
if self.log_perplexity: |
|
perplexity, cluster_usage = measure_perplexity( |
|
min_encoding_indices.detach(), self.n_e |
|
) |
|
loss_dict.update({"perplexity": perplexity, "cluster_usage": cluster_usage}) |
|
|
|
|
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean( |
|
(z_q - z.detach()) ** 2 |
|
) |
|
loss_dict[self.loss_key] = loss |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
if do_reshape: |
|
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z.shape[0], -1 |
|
) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) |
|
|
|
if self.sane_index_shape: |
|
if do_reshape: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_q.shape[0], z_q.shape[2], z_q.shape[3] |
|
) |
|
else: |
|
min_encoding_indices = rearrange( |
|
min_encoding_indices, "(b s) 1 -> b s", b=z_q.shape[0] |
|
) |
|
|
|
loss_dict["min_encoding_indices"] = min_encoding_indices |
|
|
|
return z_q, loss_dict |
|
|
|
def get_codebook_entry( |
|
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None |
|
) -> torch.Tensor: |
|
|
|
if self.remap is not None: |
|
assert shape is not None, "Need to give shape for remap" |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class EmbeddingEMA(nn.Module): |
|
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): |
|
super().__init__() |
|
self.decay = decay |
|
self.eps = eps |
|
weight = torch.randn(num_tokens, codebook_dim) |
|
self.weight = nn.Parameter(weight, requires_grad=False) |
|
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) |
|
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) |
|
self.update = True |
|
|
|
def forward(self, embed_id): |
|
return F.embedding(embed_id, self.weight) |
|
|
|
def cluster_size_ema_update(self, new_cluster_size): |
|
self.cluster_size.data.mul_(self.decay).add_( |
|
new_cluster_size, alpha=1 - self.decay |
|
) |
|
|
|
def embed_avg_ema_update(self, new_embed_avg): |
|
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) |
|
|
|
def weight_update(self, num_tokens): |
|
n = self.cluster_size.sum() |
|
smoothed_cluster_size = ( |
|
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n |
|
) |
|
|
|
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) |
|
self.weight.data.copy_(embed_normalized) |
|
|
|
|
|
class EMAVectorQuantizer(AbstractQuantizer): |
|
def __init__( |
|
self, |
|
n_embed: int, |
|
embedding_dim: int, |
|
beta: float, |
|
decay: float = 0.99, |
|
eps: float = 1e-5, |
|
remap: Optional[str] = None, |
|
unknown_index: str = "random", |
|
loss_key: str = "loss/vq", |
|
): |
|
super().__init__() |
|
self.codebook_dim = embedding_dim |
|
self.num_tokens = n_embed |
|
self.beta = beta |
|
self.loss_key = loss_key |
|
|
|
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
else: |
|
self.used = None |
|
self.re_embed = n_embed |
|
if unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
else: |
|
assert unknown_index == "random" or isinstance( |
|
unknown_index, int |
|
), "unknown index needs to be 'random', 'extra' or any integer" |
|
self.unknown_index = unknown_index |
|
if self.remap is not None: |
|
logpy.info( |
|
f"Remapping {self.n_embed} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]: |
|
|
|
|
|
z = rearrange(z, "b c h w -> b h w c") |
|
z_flattened = z.reshape(-1, self.codebook_dim) |
|
|
|
|
|
d = ( |
|
z_flattened.pow(2).sum(dim=1, keepdim=True) |
|
+ self.embedding.weight.pow(2).sum(dim=1) |
|
- 2 * torch.einsum("bd,nd->bn", z_flattened, self.embedding.weight) |
|
) |
|
|
|
encoding_indices = torch.argmin(d, dim=1) |
|
|
|
z_q = self.embedding(encoding_indices).view(z.shape) |
|
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) |
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
if self.training and self.embedding.update: |
|
|
|
encodings_sum = encodings.sum(0) |
|
self.embedding.cluster_size_ema_update(encodings_sum) |
|
|
|
embed_sum = encodings.transpose(0, 1) @ z_flattened |
|
self.embedding.embed_avg_ema_update(embed_sum) |
|
|
|
self.embedding.weight_update(self.num_tokens) |
|
|
|
|
|
loss = self.beta * F.mse_loss(z_q.detach(), z) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
z_q = rearrange(z_q, "b h w c -> b c h w") |
|
|
|
out_dict = { |
|
self.loss_key: loss, |
|
"encodings": encodings, |
|
"encoding_indices": encoding_indices, |
|
"perplexity": perplexity, |
|
} |
|
|
|
return z_q, out_dict |
|
|
|
|
|
class VectorQuantizerWithInputProjection(VectorQuantizer): |
|
def __init__( |
|
self, |
|
input_dim: int, |
|
n_codes: int, |
|
codebook_dim: int, |
|
beta: float = 1.0, |
|
output_dim: Optional[int] = None, |
|
**kwargs, |
|
): |
|
super().__init__(n_codes, codebook_dim, beta, **kwargs) |
|
self.proj_in = nn.Linear(input_dim, codebook_dim) |
|
self.output_dim = output_dim |
|
if output_dim is not None: |
|
self.proj_out = nn.Linear(codebook_dim, output_dim) |
|
else: |
|
self.proj_out = nn.Identity() |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]: |
|
rearr = False |
|
in_shape = z.shape |
|
|
|
if z.ndim > 3: |
|
rearr = self.output_dim is not None |
|
z = rearrange(z, "b c ... -> b (...) c") |
|
z = self.proj_in(z) |
|
z_q, loss_dict = super().forward(z) |
|
|
|
z_q = self.proj_out(z_q) |
|
if rearr: |
|
if len(in_shape) == 4: |
|
z_q = rearrange(z_q, "b (h w) c -> b c h w ", w=in_shape[-1]) |
|
elif len(in_shape) == 5: |
|
z_q = rearrange( |
|
z_q, "b (t h w) c -> b c t h w ", w=in_shape[-1], h=in_shape[-2] |
|
) |
|
else: |
|
raise NotImplementedError( |
|
f"rearranging not available for {len(in_shape)}-dimensional input." |
|
) |
|
|
|
return z_q, loss_dict |
|
|