|
import math |
|
import os |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from imwatermark import WatermarkEncoder |
|
from omegaconf import ListConfig |
|
from PIL import Image |
|
from torch import autocast |
|
|
|
from sgm.util import append_dims |
|
|
|
|
|
class WatermarkEmbedder: |
|
def __init__(self, watermark): |
|
self.watermark = watermark |
|
self.num_bits = len(WATERMARK_BITS) |
|
self.encoder = WatermarkEncoder() |
|
self.encoder.set_watermark("bits", self.watermark) |
|
|
|
def __call__(self, image: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Adds a predefined watermark to the input image |
|
|
|
Args: |
|
image: ([N,] B, RGB, H, W) in range [0, 1] |
|
|
|
Returns: |
|
same as input but watermarked |
|
""" |
|
squeeze = len(image.shape) == 4 |
|
if squeeze: |
|
image = image[None, ...] |
|
n = image.shape[0] |
|
image_np = rearrange( |
|
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c" |
|
).numpy()[:, :, :, ::-1] |
|
|
|
|
|
for k in range(image_np.shape[0]): |
|
image_np[k] = self.encoder.encode(image_np[k], "dwtDct") |
|
image = torch.from_numpy( |
|
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n) |
|
).to(image.device) |
|
image = torch.clamp(image / 255, min=0.0, max=1.0) |
|
if squeeze: |
|
image = image[0] |
|
return image |
|
|
|
|
|
|
|
|
|
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110 |
|
|
|
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] |
|
embed_watermark = WatermarkEmbedder(WATERMARK_BITS) |
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner): |
|
return list({x.input_key for x in conditioner.embedders}) |
|
|
|
|
|
def perform_save_locally(save_path, samples): |
|
os.makedirs(os.path.join(save_path), exist_ok=True) |
|
base_count = len(os.listdir(os.path.join(save_path))) |
|
samples = embed_watermark(samples) |
|
for sample in samples: |
|
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c") |
|
Image.fromarray(sample.astype(np.uint8)).save( |
|
os.path.join(save_path, f"{base_count:09}.png") |
|
) |
|
base_count += 1 |
|
|
|
|
|
class Img2ImgDiscretizationWrapper: |
|
""" |
|
wraps a discretizer, and prunes the sigmas |
|
params: |
|
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned) |
|
""" |
|
|
|
def __init__(self, discretization, strength: float = 1.0): |
|
self.discretization = discretization |
|
self.strength = strength |
|
assert 0.0 <= self.strength <= 1.0 |
|
|
|
def __call__(self, *args, **kwargs): |
|
|
|
sigmas = self.discretization(*args, **kwargs) |
|
print(f"sigmas after discretization, before pruning img2img: ", sigmas) |
|
sigmas = torch.flip(sigmas, (0,)) |
|
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)] |
|
print("prune index:", max(int(self.strength * len(sigmas)), 1)) |
|
sigmas = torch.flip(sigmas, (0,)) |
|
print(f"sigmas after pruning: ", sigmas) |
|
return sigmas |
|
|
|
|
|
def do_sample( |
|
model, |
|
sampler, |
|
value_dict, |
|
num_samples, |
|
H, |
|
W, |
|
C, |
|
F, |
|
force_uc_zero_embeddings: Optional[List] = None, |
|
batch2model_input: Optional[List] = None, |
|
return_latents=False, |
|
filter=None, |
|
device="cuda", |
|
): |
|
if force_uc_zero_embeddings is None: |
|
force_uc_zero_embeddings = [] |
|
if batch2model_input is None: |
|
batch2model_input = [] |
|
|
|
with torch.no_grad(): |
|
with autocast(device) as precision_scope: |
|
with model.ema_scope(): |
|
num_samples = [num_samples] |
|
batch, batch_uc = get_batch( |
|
get_unique_embedder_keys_from_conditioner(model.conditioner), |
|
value_dict, |
|
num_samples, |
|
) |
|
for key in batch: |
|
if isinstance(batch[key], torch.Tensor): |
|
print(key, batch[key].shape) |
|
elif isinstance(batch[key], list): |
|
print(key, [len(l) for l in batch[key]]) |
|
else: |
|
print(key, batch[key]) |
|
c, uc = model.conditioner.get_unconditional_conditioning( |
|
batch, |
|
batch_uc=batch_uc, |
|
force_uc_zero_embeddings=force_uc_zero_embeddings, |
|
) |
|
|
|
for k in c: |
|
if not k == "crossattn": |
|
c[k], uc[k] = map( |
|
lambda y: y[k][: math.prod(num_samples)].to(device), (c, uc) |
|
) |
|
|
|
additional_model_inputs = {} |
|
for k in batch2model_input: |
|
additional_model_inputs[k] = batch[k] |
|
|
|
shape = (math.prod(num_samples), C, H // F, W // F) |
|
randn = torch.randn(shape).to(device) |
|
|
|
def denoiser(input, sigma, c): |
|
return model.denoiser( |
|
model.model, input, sigma, c, **additional_model_inputs |
|
) |
|
|
|
samples_z = sampler(denoiser, randn, cond=c, uc=uc) |
|
samples_x = model.decode_first_stage(samples_z) |
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
if filter is not None: |
|
samples = filter(samples) |
|
|
|
if return_latents: |
|
return samples, samples_z |
|
return samples |
|
|
|
|
|
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"): |
|
|
|
|
|
batch = {} |
|
batch_uc = {} |
|
|
|
for key in keys: |
|
if key == "txt": |
|
batch["txt"] = ( |
|
np.repeat([value_dict["prompt"]], repeats=math.prod(N)) |
|
.reshape(N) |
|
.tolist() |
|
) |
|
batch_uc["txt"] = ( |
|
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N)) |
|
.reshape(N) |
|
.tolist() |
|
) |
|
elif key == "original_size_as_tuple": |
|
batch["original_size_as_tuple"] = ( |
|
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]]) |
|
.to(device) |
|
.repeat(*N, 1) |
|
) |
|
elif key == "crop_coords_top_left": |
|
batch["crop_coords_top_left"] = ( |
|
torch.tensor( |
|
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]] |
|
) |
|
.to(device) |
|
.repeat(*N, 1) |
|
) |
|
elif key == "aesthetic_score": |
|
batch["aesthetic_score"] = ( |
|
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1) |
|
) |
|
batch_uc["aesthetic_score"] = ( |
|
torch.tensor([value_dict["negative_aesthetic_score"]]) |
|
.to(device) |
|
.repeat(*N, 1) |
|
) |
|
|
|
elif key == "target_size_as_tuple": |
|
batch["target_size_as_tuple"] = ( |
|
torch.tensor([value_dict["target_height"], value_dict["target_width"]]) |
|
.to(device) |
|
.repeat(*N, 1) |
|
) |
|
else: |
|
batch[key] = value_dict[key] |
|
|
|
for key in batch.keys(): |
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor): |
|
batch_uc[key] = torch.clone(batch[key]) |
|
return batch, batch_uc |
|
|
|
|
|
def get_input_image_tensor(image: Image.Image, device="cuda"): |
|
w, h = image.size |
|
print(f"loaded input image of size ({w}, {h})") |
|
width, height = map( |
|
lambda x: x - x % 64, (w, h) |
|
) |
|
image = image.resize((width, height)) |
|
image_array = np.array(image.convert("RGB")) |
|
image_array = image_array[None].transpose(0, 3, 1, 2) |
|
image_tensor = torch.from_numpy(image_array).to(dtype=torch.float32) / 127.5 - 1.0 |
|
return image_tensor.to(device) |
|
|
|
|
|
def do_img2img( |
|
img, |
|
model, |
|
sampler, |
|
value_dict, |
|
num_samples, |
|
force_uc_zero_embeddings=[], |
|
additional_kwargs={}, |
|
offset_noise_level: float = 0.0, |
|
return_latents=False, |
|
skip_encode=False, |
|
filter=None, |
|
device="cuda", |
|
): |
|
with torch.no_grad(): |
|
with autocast(device) as precision_scope: |
|
with model.ema_scope(): |
|
batch, batch_uc = get_batch( |
|
get_unique_embedder_keys_from_conditioner(model.conditioner), |
|
value_dict, |
|
[num_samples], |
|
) |
|
c, uc = model.conditioner.get_unconditional_conditioning( |
|
batch, |
|
batch_uc=batch_uc, |
|
force_uc_zero_embeddings=force_uc_zero_embeddings, |
|
) |
|
|
|
for k in c: |
|
c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc)) |
|
|
|
for k in additional_kwargs: |
|
c[k] = uc[k] = additional_kwargs[k] |
|
if skip_encode: |
|
z = img |
|
else: |
|
z = model.encode_first_stage(img) |
|
noise = torch.randn_like(z) |
|
sigmas = sampler.discretization(sampler.num_steps) |
|
sigma = sigmas[0].to(z.device) |
|
|
|
if offset_noise_level > 0.0: |
|
noise = noise + offset_noise_level * append_dims( |
|
torch.randn(z.shape[0], device=z.device), z.ndim |
|
) |
|
noised_z = z + noise * append_dims(sigma, z.ndim) |
|
noised_z = noised_z / torch.sqrt( |
|
1.0 + sigmas[0] ** 2.0 |
|
) |
|
|
|
def denoiser(x, sigma, c): |
|
return model.denoiser(model.model, x, sigma, c) |
|
|
|
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc) |
|
samples_x = model.decode_first_stage(samples_z) |
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
if filter is not None: |
|
samples = filter(samples) |
|
|
|
if return_latents: |
|
return samples, samples_z |
|
return samples |
|
|