|
import math |
|
from contextlib import contextmanager |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import pytorch_lightning as pl |
|
import torch |
|
from omegaconf import ListConfig, OmegaConf |
|
from safetensors.torch import load_file as load_safetensors |
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
|
from ..modules import UNCONDITIONAL_CONFIG |
|
from ..modules.autoencoding.temporal_ae import VideoDecoder |
|
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER |
|
from ..modules.ema import LitEma |
|
from ..util import (default, disabled_train, get_obj_from_str, |
|
instantiate_from_config, log_txt_as_img) |
|
|
|
|
|
class DiffusionEngine(pl.LightningModule): |
|
def __init__( |
|
self, |
|
network_config, |
|
denoiser_config, |
|
first_stage_config, |
|
conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None, |
|
sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None, |
|
optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None, |
|
scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None, |
|
loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None, |
|
network_wrapper: Union[None, str] = None, |
|
ckpt_path: Union[None, str] = None, |
|
use_ema: bool = False, |
|
ema_decay_rate: float = 0.9999, |
|
scale_factor: float = 1.0, |
|
disable_first_stage_autocast=False, |
|
input_key: str = "jpg", |
|
log_keys: Union[List, None] = None, |
|
no_cond_log: bool = False, |
|
compile_model: bool = False, |
|
en_and_decode_n_samples_a_time: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.log_keys = log_keys |
|
self.input_key = input_key |
|
self.optimizer_config = default( |
|
optimizer_config, {"target": "torch.optim.AdamW"} |
|
) |
|
model = instantiate_from_config(network_config) |
|
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))( |
|
model, compile_model=compile_model |
|
) |
|
|
|
self.denoiser = instantiate_from_config(denoiser_config) |
|
self.sampler = ( |
|
instantiate_from_config(sampler_config) |
|
if sampler_config is not None |
|
else None |
|
) |
|
self.conditioner = instantiate_from_config( |
|
default(conditioner_config, UNCONDITIONAL_CONFIG) |
|
) |
|
self.scheduler_config = scheduler_config |
|
self._init_first_stage(first_stage_config) |
|
|
|
self.loss_fn = ( |
|
instantiate_from_config(loss_fn_config) |
|
if loss_fn_config is not None |
|
else None |
|
) |
|
|
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model, decay=ema_decay_rate) |
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
self.scale_factor = scale_factor |
|
self.disable_first_stage_autocast = disable_first_stage_autocast |
|
self.no_cond_log = no_cond_log |
|
|
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path) |
|
|
|
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time |
|
|
|
def init_from_ckpt( |
|
self, |
|
path: str, |
|
) -> None: |
|
if path.endswith("ckpt"): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
elif path.endswith("safetensors"): |
|
sd = load_safetensors(path) |
|
else: |
|
raise NotImplementedError |
|
|
|
missing, unexpected = self.load_state_dict(sd, strict=False) |
|
print( |
|
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" |
|
) |
|
if len(missing) > 0: |
|
print(f"Missing Keys: {missing}") |
|
if len(unexpected) > 0: |
|
print(f"Unexpected Keys: {unexpected}") |
|
|
|
def _init_first_stage(self, config): |
|
model = instantiate_from_config(config).eval() |
|
model.train = disabled_train |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
self.first_stage_model = model |
|
|
|
def get_input(self, batch): |
|
|
|
|
|
return batch[self.input_key] |
|
|
|
@torch.no_grad() |
|
def decode_first_stage(self, z): |
|
z = 1.0 / self.scale_factor * z |
|
n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0]) |
|
|
|
n_rounds = math.ceil(z.shape[0] / n_samples) |
|
all_out = [] |
|
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): |
|
for n in range(n_rounds): |
|
if isinstance(self.first_stage_model.decoder, VideoDecoder): |
|
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])} |
|
else: |
|
kwargs = {} |
|
out = self.first_stage_model.decode( |
|
z[n * n_samples : (n + 1) * n_samples], **kwargs |
|
) |
|
all_out.append(out) |
|
out = torch.cat(all_out, dim=0) |
|
return out |
|
|
|
@torch.no_grad() |
|
def encode_first_stage(self, x): |
|
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0]) |
|
n_rounds = math.ceil(x.shape[0] / n_samples) |
|
all_out = [] |
|
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): |
|
for n in range(n_rounds): |
|
out = self.first_stage_model.encode( |
|
x[n * n_samples : (n + 1) * n_samples] |
|
) |
|
all_out.append(out) |
|
z = torch.cat(all_out, dim=0) |
|
z = self.scale_factor * z |
|
return z |
|
|
|
def forward(self, x, batch): |
|
loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch) |
|
loss_mean = loss.mean() |
|
loss_dict = {"loss": loss_mean} |
|
return loss_mean, loss_dict |
|
|
|
def shared_step(self, batch: Dict) -> Any: |
|
x = self.get_input(batch) |
|
x = self.encode_first_stage(x) |
|
batch["global_step"] = self.global_step |
|
loss, loss_dict = self(x, batch) |
|
return loss, loss_dict |
|
|
|
def training_step(self, batch, batch_idx): |
|
loss, loss_dict = self.shared_step(batch) |
|
|
|
self.log_dict( |
|
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False |
|
) |
|
|
|
self.log( |
|
"global_step", |
|
self.global_step, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=False, |
|
) |
|
|
|
if self.scheduler_config is not None: |
|
lr = self.optimizers().param_groups[0]["lr"] |
|
self.log( |
|
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False |
|
) |
|
|
|
return loss |
|
|
|
def on_train_start(self, *args, **kwargs): |
|
if self.sampler is None or self.loss_fn is None: |
|
raise ValueError("Sampler and loss function need to be set for training.") |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
if self.use_ema: |
|
self.model_ema(self.model) |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
if context is not None: |
|
print(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
if context is not None: |
|
print(f"{context}: Restored training weights") |
|
|
|
def instantiate_optimizer_from_config(self, params, lr, cfg): |
|
return get_obj_from_str(cfg["target"])( |
|
params, lr=lr, **cfg.get("params", dict()) |
|
) |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
for embedder in self.conditioner.embedders: |
|
if embedder.is_trainable: |
|
params = params + list(embedder.parameters()) |
|
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config) |
|
if self.scheduler_config is not None: |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
print("Setting up LambdaLR scheduler...") |
|
scheduler = [ |
|
{ |
|
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule), |
|
"interval": "step", |
|
"frequency": 1, |
|
} |
|
] |
|
return [opt], scheduler |
|
return opt |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
cond: Dict, |
|
uc: Union[Dict, None] = None, |
|
batch_size: int = 16, |
|
shape: Union[None, Tuple, List] = None, |
|
**kwargs, |
|
): |
|
randn = torch.randn(batch_size, *shape).to(self.device) |
|
|
|
denoiser = lambda input, sigma, c: self.denoiser( |
|
self.model, input, sigma, c, **kwargs |
|
) |
|
samples = self.sampler(denoiser, randn, cond, uc=uc) |
|
return samples |
|
|
|
@torch.no_grad() |
|
def log_conditionings(self, batch: Dict, n: int) -> Dict: |
|
""" |
|
Defines heuristics to log different conditionings. |
|
These can be lists of strings (text-to-image), tensors, ints, ... |
|
""" |
|
image_h, image_w = batch[self.input_key].shape[2:] |
|
log = dict() |
|
|
|
for embedder in self.conditioner.embedders: |
|
if ( |
|
(self.log_keys is None) or (embedder.input_key in self.log_keys) |
|
) and not self.no_cond_log: |
|
x = batch[embedder.input_key][:n] |
|
if isinstance(x, torch.Tensor): |
|
if x.dim() == 1: |
|
|
|
x = [str(x[i].item()) for i in range(x.shape[0])] |
|
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4) |
|
elif x.dim() == 2: |
|
|
|
x = [ |
|
"x".join([str(xx) for xx in x[i].tolist()]) |
|
for i in range(x.shape[0]) |
|
] |
|
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) |
|
else: |
|
raise NotImplementedError() |
|
elif isinstance(x, (List, ListConfig)): |
|
if isinstance(x[0], str): |
|
|
|
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) |
|
else: |
|
raise NotImplementedError() |
|
else: |
|
raise NotImplementedError() |
|
log[embedder.input_key] = xc |
|
return log |
|
|
|
@torch.no_grad() |
|
def log_images( |
|
self, |
|
batch: Dict, |
|
N: int = 8, |
|
sample: bool = True, |
|
ucg_keys: List[str] = None, |
|
**kwargs, |
|
) -> Dict: |
|
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders] |
|
if ucg_keys: |
|
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), ( |
|
"Each defined ucg key for sampling must be in the provided conditioner input keys," |
|
f"but we have {ucg_keys} vs. {conditioner_input_keys}" |
|
) |
|
else: |
|
ucg_keys = conditioner_input_keys |
|
log = dict() |
|
|
|
x = self.get_input(batch) |
|
|
|
c, uc = self.conditioner.get_unconditional_conditioning( |
|
batch, |
|
force_uc_zero_embeddings=ucg_keys |
|
if len(self.conditioner.embedders) > 0 |
|
else [], |
|
) |
|
|
|
sampling_kwargs = {} |
|
|
|
N = min(x.shape[0], N) |
|
x = x.to(self.device)[:N] |
|
log["inputs"] = x |
|
z = self.encode_first_stage(x) |
|
log["reconstructions"] = self.decode_first_stage(z) |
|
log.update(self.log_conditionings(batch, N)) |
|
|
|
for k in c: |
|
if isinstance(c[k], torch.Tensor): |
|
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc)) |
|
|
|
if sample: |
|
with self.ema_scope("Plotting"): |
|
samples = self.sample( |
|
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs |
|
) |
|
samples = self.decode_first_stage(samples) |
|
log["samples"] = samples |
|
return log |
|
|