|
import functools |
|
import importlib |
|
import os |
|
from functools import partial |
|
from inspect import isfunction |
|
|
|
import fsspec |
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
from safetensors.torch import load_file as load_safetensors |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def get_string_from_tuple(s): |
|
try: |
|
|
|
if s[0] == "(" and s[-1] == ")": |
|
|
|
t = eval(s) |
|
|
|
if type(t) == tuple: |
|
return t[0] |
|
else: |
|
pass |
|
except: |
|
pass |
|
return s |
|
|
|
|
|
def is_power_of_two(n): |
|
""" |
|
chat.openai.com/chat |
|
Return True if n is a power of 2, otherwise return False. |
|
|
|
The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False. |
|
The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False. |
|
If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise. |
|
Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False. |
|
|
|
""" |
|
if n <= 0: |
|
return False |
|
return (n & (n - 1)) == 0 |
|
|
|
|
|
def autocast(f, enabled=True): |
|
def do_autocast(*args, **kwargs): |
|
with torch.cuda.amp.autocast( |
|
enabled=enabled, |
|
dtype=torch.get_autocast_gpu_dtype(), |
|
cache_enabled=torch.is_autocast_cache_enabled(), |
|
): |
|
return f(*args, **kwargs) |
|
|
|
return do_autocast |
|
|
|
|
|
def load_partial_from_config(config): |
|
return partial(get_obj_from_str(config["target"]), **config.get("params", dict())) |
|
|
|
|
|
def log_txt_as_img(wh, xc, size=10): |
|
|
|
|
|
b = len(xc) |
|
txts = list() |
|
for bi in range(b): |
|
txt = Image.new("RGB", wh, color="white") |
|
draw = ImageDraw.Draw(txt) |
|
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) |
|
nc = int(40 * (wh[0] / 256)) |
|
if isinstance(xc[bi], list): |
|
text_seq = xc[bi][0] |
|
else: |
|
text_seq = xc[bi] |
|
lines = "\n".join( |
|
text_seq[start : start + nc] for start in range(0, len(text_seq), nc) |
|
) |
|
|
|
try: |
|
draw.text((0, 0), lines, fill="black", font=font) |
|
except UnicodeEncodeError: |
|
print("Cant encode string for logging. Skipping.") |
|
|
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 |
|
txts.append(txt) |
|
txts = np.stack(txts) |
|
txts = torch.tensor(txts) |
|
return txts |
|
|
|
|
|
def partialclass(cls, *args, **kwargs): |
|
class NewCls(cls): |
|
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs) |
|
|
|
return NewCls |
|
|
|
|
|
def make_path_absolute(path): |
|
fs, p = fsspec.core.url_to_fs(path) |
|
if fs.protocol == "file": |
|
return os.path.abspath(p) |
|
return path |
|
|
|
|
|
def ismap(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] > 3) |
|
|
|
|
|
def isimage(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) |
|
|
|
|
|
def isheatmap(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
|
|
return x.ndim == 2 |
|
|
|
|
|
def isneighbors(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1) |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def expand_dims_like(x, y): |
|
while x.dim() != y.dim(): |
|
x = x.unsqueeze(-1) |
|
return x |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def count_params(model, verbose=False): |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
if verbose: |
|
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") |
|
return total_params |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
if config == "__is_first_stage__": |
|
return None |
|
elif config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_obj_from_str(string, reload=False, invalidate_cache=True): |
|
module, cls = string.rsplit(".", 1) |
|
if invalidate_cache: |
|
importlib.invalidate_caches() |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def append_zero(x): |
|
return torch.cat([x, x.new_zeros([1])]) |
|
|
|
|
|
def append_dims(x, target_dims): |
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" |
|
dims_to_append = target_dims - x.ndim |
|
if dims_to_append < 0: |
|
raise ValueError( |
|
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" |
|
) |
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=True, freeze=True): |
|
print(f"Loading model from {ckpt}") |
|
if ckpt.endswith("ckpt"): |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
sd = pl_sd["state_dict"] |
|
elif ckpt.endswith("safetensors"): |
|
sd = load_safetensors(ckpt) |
|
else: |
|
raise NotImplementedError |
|
|
|
model = instantiate_from_config(config.model) |
|
|
|
m, u = model.load_state_dict(sd, strict=False) |
|
|
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
if freeze: |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
|
|
model.eval() |
|
return model |
|
|
|
|
|
def get_configs_path() -> str: |
|
""" |
|
Get the `configs` directory. |
|
For a working copy, this is the one in the root of the repository, |
|
but for an installed copy, it's in the `sgm` package (see pyproject.toml). |
|
""" |
|
this_dir = os.path.dirname(__file__) |
|
candidates = ( |
|
os.path.join(this_dir, "configs"), |
|
os.path.join(this_dir, "..", "configs"), |
|
) |
|
for candidate in candidates: |
|
candidate = os.path.abspath(candidate) |
|
if os.path.isdir(candidate): |
|
return candidate |
|
raise FileNotFoundError(f"Could not find SGM configs in {candidates}") |
|
|
|
|
|
def get_nested_attribute(obj, attribute_path, depth=None, return_key=False): |
|
""" |
|
Will return the result of a recursive get attribute call. |
|
E.g.: |
|
a.b.c |
|
= getattr(getattr(a, "b"), "c") |
|
= get_nested_attribute(a, "b.c") |
|
If any part of the attribute call is an integer x with current obj a, will |
|
try to call a[x] instead of a.x first. |
|
""" |
|
attributes = attribute_path.split(".") |
|
if depth is not None and depth > 0: |
|
attributes = attributes[:depth] |
|
assert len(attributes) > 0, "At least one attribute should be selected" |
|
current_attribute = obj |
|
current_key = None |
|
for level, attribute in enumerate(attributes): |
|
current_key = ".".join(attributes[: level + 1]) |
|
try: |
|
id_ = int(attribute) |
|
current_attribute = current_attribute[id_] |
|
except ValueError: |
|
current_attribute = getattr(current_attribute, attribute) |
|
|
|
return (current_attribute, current_key) if return_key else current_attribute |
|
|