import gradio as gr from gradio_client import Client def get_caption(image_in): client = Client("https://vikhyatk-moondream1.hf.space/") result = client.predict( image_in, # filepath in 'image' Image component "Describe the image", # str in 'Question' Textbox component api_name="/answer_question" ) print(result) return result def get_lcm(prompt): client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/") result = client.predict( prompt, # str in 'parameter_5' Textbox component 0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component 8, # float (numeric value between 2 and 10) in 'Steps' Slider component 0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component True, # bool in 'Randomize' Checkbox component api_name="/predict" ) print(result) return result[0] def infer(image_in): caption = get_caption(image_in) img_var = get_lcm(caption) return img_var gr.Interface( title = "Supa Fast Image Variation", description = "Get quick image variation from image input, using moondream1 for caption, and LCM SDXL for image generation", fn = infer, inputs = [ gr.Image(type="filepath", label="Image input") ], outputs = [ gr.Image(label="LCM Image variation") ], examples = [ "examples/frog_clean.jpg", "examples/martin_pecheur.jpeg", "examples/forest_deer.png" ], concurrency_limit = 4 ).queue(max_size=25).launch(show_api=False, show_error=True)