Spaces:
Paused
Paused
File size: 4,446 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
import numpy as np
from torch.utils.data import DataLoader
from tests import get_tests_output_path, get_tests_path
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.configs import BaseGANVocoderConfig
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data
file_path = os.path.dirname(os.path.realpath(__file__))
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
C = BaseGANVocoderConfig()
test_data_path = os.path.join(get_tests_path(), "data/ljspeech/")
ok_ljspeech = os.path.exists(test_data_path)
def gan_dataset_case(
batch_size, seq_len, hop_len, conv_pad, return_pairs, return_segments, use_noise_augment, use_cache, num_workers
):
"""Run dataloader with given parameters and check conditions"""
ap = AudioProcessor(**C.audio)
_, train_items = load_wav_data(test_data_path, 10)
dataset = GANDataset(
ap,
train_items,
seq_len=seq_len,
hop_len=hop_len,
pad_short=2000,
conv_pad=conv_pad,
return_pairs=return_pairs,
return_segments=return_segments,
use_noise_augment=use_noise_augment,
use_cache=use_cache,
)
loader = DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True
)
max_iter = 10
count_iter = 0
def check_item(feat, wav):
"""Pass a single pair of features and waveform"""
feat = feat.numpy()
wav = wav.numpy()
expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2)
# check shapes
assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}"
assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2]
# check feature vs audio match
if not use_noise_augment:
for idx in range(batch_size):
audio = wav[idx].squeeze()
feat = feat[idx]
mel = ap.melspectrogram(audio)
# the first 2 and the last 2 frames are skipped due to the padding
# differences in stft
max_diff = abs((feat - mel[:, : feat.shape[-1]])[:, 2:-2]).max()
assert max_diff <= 1e-6, f" [!] {max_diff}"
# return random segments or return the whole audio
if return_segments:
if return_pairs:
for item1, item2 in loader:
feat1, wav1 = item1
feat2, wav2 = item2
check_item(feat1, wav1)
check_item(feat2, wav2)
count_iter += 1
else:
for item1 in loader:
feat1, wav1 = item1
check_item(feat1, wav1)
count_iter += 1
else:
for item in loader:
feat, wav = item
expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2))
assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}"
assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2]
count_iter += 1
if count_iter == max_iter:
break
def test_parametrized_gan_dataset():
"""test dataloader with different parameters"""
params = [
[32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0],
[32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 4],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, True, True, 0],
[1, C.audio["hop_length"], C.audio["hop_length"], 0, True, True, True, True, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, True, True, True, True, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, True, True, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, False, True, True, False, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0],
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0],
]
for param in params:
print(param)
gan_dataset_case(*param)
|