Spaces:
Paused
Paused
import os | |
import unittest | |
import numpy as np | |
import torch | |
from tests import get_tests_input_path | |
from TTS.config import load_config | |
from TTS.encoder.utils.generic_utils import setup_encoder_model | |
from TTS.encoder.utils.io import save_checkpoint | |
from TTS.tts.utils.managers import EmbeddingManager | |
from TTS.utils.audio import AudioProcessor | |
encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") | |
encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth") | |
sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") | |
sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") | |
embedding_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") | |
embeddings_file_path2 = os.path.join(get_tests_input_path(), "../data/dummy_speakers2.json") | |
embeddings_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.pth") | |
class EmbeddingManagerTest(unittest.TestCase): | |
"""Test emEeddingManager for loading embedding files and computing embeddings from waveforms""" | |
def test_speaker_embedding(): | |
# load config | |
config = load_config(encoder_config_path) | |
config.audio.resample = True | |
# create a dummy speaker encoder | |
model = setup_encoder_model(config) | |
save_checkpoint(model, None, None, get_tests_input_path(), 0) | |
# load audio processor and speaker encoder | |
manager = EmbeddingManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) | |
# load a sample audio and compute embedding | |
ap = AudioProcessor(**config.audio) | |
waveform = ap.load_wav(sample_wav_path) | |
mel = ap.melspectrogram(waveform) | |
embedding = manager.compute_embeddings(mel) | |
assert embedding.shape[1] == 256 | |
# compute embedding directly from an input file | |
embedding = manager.compute_embedding_from_clip(sample_wav_path) | |
embedding2 = manager.compute_embedding_from_clip(sample_wav_path) | |
embedding = torch.FloatTensor(embedding) | |
embedding2 = torch.FloatTensor(embedding2) | |
assert embedding.shape[0] == 256 | |
assert (embedding - embedding2).sum() == 0.0 | |
# compute embedding from a list of wav files. | |
embedding3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) | |
embedding3 = torch.FloatTensor(embedding3) | |
assert embedding3.shape[0] == 256 | |
assert (embedding - embedding3).sum() != 0.0 | |
# remove dummy model | |
os.remove(encoder_model_path) | |
def test_embedding_file_processing(self): # pylint: disable=no-self-use | |
manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) | |
# test embedding querying | |
embedding = manager.get_embedding_by_clip(manager.clip_ids[0]) | |
assert len(embedding) == 256 | |
embeddings = manager.get_embeddings_by_name(manager.embedding_names[0]) | |
assert len(embeddings[0]) == 256 | |
embedding1 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=True) | |
assert len(embedding1) == 256 | |
embedding2 = manager.get_mean_embedding(manager.embedding_names[0], num_samples=2, randomize=False) | |
assert len(embedding2) == 256 | |
assert np.sum(np.array(embedding1) - np.array(embedding2)) != 0 | |
def test_embedding_file_loading(self): | |
# test loading a json file | |
manager = EmbeddingManager(embedding_file_path=embedding_file_path) | |
self.assertEqual(manager.num_embeddings, 384) | |
self.assertEqual(manager.embedding_dim, 256) | |
# test loading a pth file | |
manager = EmbeddingManager(embedding_file_path=embeddings_file_pth_path) | |
self.assertEqual(manager.num_embeddings, 384) | |
self.assertEqual(manager.embedding_dim, 256) | |
# test loading a pth files with duplicate embedding keys | |
with self.assertRaises(Exception) as context: | |
manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_pth_path]) | |
self.assertTrue("Duplicate embedding names" in str(context.exception)) | |
# test loading embedding files with different embedding keys | |
manager = EmbeddingManager(embedding_file_path=[embeddings_file_pth_path, embeddings_file_path2]) | |
self.assertEqual(manager.embedding_dim, 256) | |
self.assertEqual(manager.num_embeddings, 384 * 2) | |