Spaces:
Paused
Paused
import glob | |
import os | |
import shutil | |
from tests import get_device_id, get_tests_output_path, run_cli | |
from TTS.config.shared_configs import BaseAudioConfig | |
from TTS.encoder.configs.speaker_encoder_config import SpeakerEncoderConfig | |
def run_test_train(): | |
command = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} " | |
f"--coqpit.output_path {output_path} " | |
"--coqpit.datasets.0.formatter ljspeech_test " | |
"--coqpit.datasets.0.meta_file_train metadata.csv " | |
"--coqpit.datasets.0.meta_file_val metadata.csv " | |
"--coqpit.datasets.0.path tests/data/ljspeech " | |
) | |
run_cli(command) | |
config_path = os.path.join(get_tests_output_path(), "test_speaker_encoder_config.json") | |
output_path = os.path.join(get_tests_output_path(), "train_outputs") | |
config = SpeakerEncoderConfig( | |
batch_size=4, | |
num_classes_in_batch=4, | |
num_utter_per_class=2, | |
eval_num_classes_in_batch=4, | |
eval_num_utter_per_class=2, | |
num_loader_workers=1, | |
epochs=1, | |
print_step=1, | |
save_step=2, | |
print_eval=True, | |
run_eval=True, | |
audio=BaseAudioConfig(num_mels=80), | |
) | |
config.audio.do_trim_silence = True | |
config.audio.trim_db = 60 | |
config.loss = "ge2e" | |
config.save_json(config_path) | |
print(config) | |
# train the model for one epoch | |
run_test_train() | |
# Find latest folder | |
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
# restore the model and continue training for one more epoch | |
command_train = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " | |
) | |
run_cli(command_train) | |
shutil.rmtree(continue_path) | |
# test resnet speaker encoder | |
config.model_params["model_name"] = "resnet" | |
config.save_json(config_path) | |
# train the model for one epoch | |
run_test_train() | |
# Find latest folder | |
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
# restore the model and continue training for one more epoch | |
command_train = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " | |
) | |
run_cli(command_train) | |
shutil.rmtree(continue_path) | |
# test model with ge2e loss function | |
# config.loss = "ge2e" | |
# config.save_json(config_path) | |
# run_test_train() | |
# test model with angleproto loss function | |
# config.loss = "angleproto" | |
# config.save_json(config_path) | |
# run_test_train() | |
# test model with softmaxproto loss function | |
config.loss = "softmaxproto" | |
config.save_json(config_path) | |
run_test_train() | |