Spaces:
Paused
Paused
import glob | |
import json | |
import os | |
import shutil | |
import torch | |
from trainer import get_last_checkpoint | |
from tests import get_device_id, get_tests_output_path, run_cli | |
from TTS.tts.configs.neuralhmm_tts_config import NeuralhmmTTSConfig | |
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") | |
output_path = os.path.join(get_tests_output_path(), "train_outputs") | |
parameter_path = os.path.join(get_tests_output_path(), "lj_parameters.pt") | |
torch.save({"mean": -5.5138, "std": 2.0636, "init_transition_prob": 0.3212}, parameter_path) | |
config = NeuralhmmTTSConfig( | |
batch_size=3, | |
eval_batch_size=3, | |
num_loader_workers=0, | |
num_eval_loader_workers=0, | |
text_cleaner="phoneme_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"), | |
run_eval=True, | |
test_delay_epochs=-1, | |
mel_statistics_parameter_path=parameter_path, | |
epochs=1, | |
print_step=1, | |
test_sentences=[ | |
"Be a voice, not an echo.", | |
], | |
print_eval=True, | |
max_sampling_time=50, | |
) | |
config.audio.do_trim_silence = True | |
config.audio.trim_db = 60 | |
config.save_json(config_path) | |
# train the model for one epoch when mel parameters exists | |
command_train = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " | |
f"--coqpit.output_path {output_path} " | |
"--coqpit.datasets.0.formatter ljspeech " | |
"--coqpit.datasets.0.meta_file_train metadata.csv " | |
"--coqpit.datasets.0.meta_file_val metadata.csv " | |
"--coqpit.datasets.0.path tests/data/ljspeech " | |
"--coqpit.test_delay_epochs 0 " | |
) | |
run_cli(command_train) | |
# train the model for one epoch when mel parameters have to be computed from the dataset | |
if os.path.exists(parameter_path): | |
os.remove(parameter_path) | |
command_train = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " | |
f"--coqpit.output_path {output_path} " | |
"--coqpit.datasets.0.formatter ljspeech " | |
"--coqpit.datasets.0.meta_file_train metadata.csv " | |
"--coqpit.datasets.0.meta_file_val metadata.csv " | |
"--coqpit.datasets.0.path tests/data/ljspeech " | |
"--coqpit.test_delay_epochs 0 " | |
) | |
run_cli(command_train) | |
# Find latest folder | |
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
# Inference using TTS API | |
continue_config_path = os.path.join(continue_path, "config.json") | |
continue_restore_path, _ = get_last_checkpoint(continue_path) | |
out_wav_path = os.path.join(get_tests_output_path(), "output.wav") | |
# Check integrity of the config | |
with open(continue_config_path, "r", encoding="utf-8") as f: | |
config_loaded = json.load(f) | |
assert config_loaded["characters"] is not None | |
assert config_loaded["output_path"] in continue_path | |
assert config_loaded["test_delay_epochs"] == 0 | |
# Load the model and run inference | |
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" | |
run_cli(inference_command) | |
# restore the model and continue training for one more epoch | |
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " | |
run_cli(command_train) | |
shutil.rmtree(continue_path) | |