Spaces:
Paused
Paused
import copy | |
import os | |
import unittest | |
import torch | |
from torch import nn, optim | |
from tests import get_tests_input_path | |
from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig | |
from TTS.tts.configs.tacotron2_config import Tacotron2Config | |
from TTS.tts.layers.losses import MSELossMasked | |
from TTS.tts.models.tacotron2 import Tacotron2 | |
from TTS.utils.audio import AudioProcessor | |
# pylint: disable=unused-variable | |
torch.manual_seed(1) | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
config_global = Tacotron2Config(num_chars=32, num_speakers=5, out_channels=80, decoder_output_dim=80) | |
ap = AudioProcessor(**config_global.audio) | |
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") | |
class TacotronTrainTest(unittest.TestCase): | |
"""Test vanilla Tacotron2 model.""" | |
def test_train_step(self): # pylint: disable=no-self-use | |
config = config_global.copy() | |
config.use_speaker_embedding = False | |
config.num_speakers = 1 | |
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
input_lengths = torch.randint(100, 128, (8,)).long().to(device) | |
input_lengths = torch.sort(input_lengths, descending=True)[0] | |
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
mel_lengths[0] = 30 | |
stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
for idx in mel_lengths: | |
stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
criterion = MSELossMasked(seq_len_norm=False).to(device) | |
criterion_st = nn.BCEWithLogitsLoss().to(device) | |
model = Tacotron2(config).to(device) | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
for i in range(5): | |
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) | |
assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 | |
assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 | |
optimizer.zero_grad() | |
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |
class MultiSpeakerTacotronTrainTest(unittest.TestCase): | |
"""Test multi-speaker Tacotron2 with speaker embedding layer""" | |
def test_train_step(): | |
config = config_global.copy() | |
config.use_speaker_embedding = True | |
config.num_speakers = 5 | |
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
input_lengths = torch.randint(100, 128, (8,)).long().to(device) | |
input_lengths = torch.sort(input_lengths, descending=True)[0] | |
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
mel_lengths[0] = 30 | |
stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
for idx in mel_lengths: | |
stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
criterion = MSELossMasked(seq_len_norm=False).to(device) | |
criterion_st = nn.BCEWithLogitsLoss().to(device) | |
config.d_vector_dim = 55 | |
model = Tacotron2(config).to(device) | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
for _ in range(5): | |
outputs = model.forward( | |
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
) | |
assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 | |
assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 | |
optimizer.zero_grad() | |
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |
class TacotronGSTTrainTest(unittest.TestCase): | |
"""Test multi-speaker Tacotron2 with Global Style Token and Speaker Embedding""" | |
# pylint: disable=no-self-use | |
def test_train_step(self): | |
# with random gst mel style | |
config = config_global.copy() | |
config.use_speaker_embedding = True | |
config.num_speakers = 10 | |
config.use_gst = True | |
config.gst = GSTConfig() | |
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
input_lengths = torch.randint(100, 128, (8,)).long().to(device) | |
input_lengths = torch.sort(input_lengths, descending=True)[0] | |
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
mel_lengths[0] = 30 | |
stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
for idx in mel_lengths: | |
stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
criterion = MSELossMasked(seq_len_norm=False).to(device) | |
criterion_st = nn.BCEWithLogitsLoss().to(device) | |
config.use_gst = True | |
config.gst = GSTConfig() | |
model = Tacotron2(config).to(device) | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
for i in range(10): | |
outputs = model.forward( | |
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
) | |
assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 | |
assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 | |
optimizer.zero_grad() | |
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
name, param = name_param | |
if name == "gst_layer.encoder.recurrence.weight_hh_l0": | |
# print(param.grad) | |
continue | |
assert (param != param_ref).any(), "param {} {} with shape {} not updated!! \n{}\n{}".format( | |
name, count, param.shape, param, param_ref | |
) | |
count += 1 | |
# with file gst style | |
mel_spec = ( | |
torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :30].unsqueeze(0).transpose(1, 2).to(device) | |
) | |
mel_spec = mel_spec.repeat(8, 1, 1) | |
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
input_lengths = torch.randint(100, 128, (8,)).long().to(device) | |
input_lengths = torch.sort(input_lengths, descending=True)[0] | |
mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
mel_lengths[0] = 30 | |
stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
for idx in mel_lengths: | |
stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
criterion = MSELossMasked(seq_len_norm=False).to(device) | |
criterion_st = nn.BCEWithLogitsLoss().to(device) | |
model = Tacotron2(config).to(device) | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
for i in range(10): | |
outputs = model.forward( | |
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
) | |
assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 | |
assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 | |
optimizer.zero_grad() | |
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
name, param = name_param | |
if name == "gst_layer.encoder.recurrence.weight_hh_l0": | |
# print(param.grad) | |
continue | |
assert (param != param_ref).any(), "param {} {} with shape {} not updated!! \n{}\n{}".format( | |
name, count, param.shape, param, param_ref | |
) | |
count += 1 | |
class TacotronCapacitronTrainTest(unittest.TestCase): | |
def test_train_step(): | |
config = Tacotron2Config( | |
num_chars=32, | |
num_speakers=10, | |
use_speaker_embedding=True, | |
out_channels=80, | |
decoder_output_dim=80, | |
use_capacitron_vae=True, | |
capacitron_vae=CapacitronVAEConfig(), | |
optimizer="CapacitronOptimizer", | |
optimizer_params={ | |
"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, | |
"SGD": {"lr": 1e-5, "momentum": 0.9}, | |
}, | |
) | |
batch = dict({}) | |
batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) | |
batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) | |
batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] | |
batch["text_lengths"][0] = 128 | |
batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) | |
batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) | |
batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] | |
batch["mel_lengths"][0] = 120 | |
batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) | |
batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) | |
batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) | |
batch["d_vectors"] = None | |
for idx in batch["mel_lengths"]: | |
batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 | |
batch["stop_targets"] = batch["stop_targets"].view( | |
batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 | |
) | |
batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
model = Tacotron2(config).to(device) | |
criterion = model.get_criterion().to(device) | |
optimizer = model.get_optimizer() | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
for _ in range(10): | |
_, loss_dict = model.train_step(batch, criterion) | |
optimizer.zero_grad() | |
loss_dict["capacitron_vae_beta_loss"].backward() | |
optimizer.first_step() | |
loss_dict["loss"].backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): | |
"""Test multi-speaker Tacotron2 with Global Style Tokens and d-vector inputs.""" | |
def test_train_step(): | |
config = config_global.copy() | |
config.use_d_vector_file = True | |
config.use_gst = True | |
config.gst = GSTConfig() | |
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
input_lengths = torch.randint(100, 128, (8,)).long().to(device) | |
input_lengths = torch.sort(input_lengths, descending=True)[0] | |
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_postnet_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
mel_lengths[0] = 30 | |
stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
speaker_embeddings = torch.rand(8, 55).to(device) | |
for idx in mel_lengths: | |
stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
criterion = MSELossMasked(seq_len_norm=False).to(device) | |
criterion_st = nn.BCEWithLogitsLoss().to(device) | |
config.d_vector_dim = 55 | |
model = Tacotron2(config).to(device) | |
model.train() | |
model_ref = copy.deepcopy(model) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
for i in range(5): | |
outputs = model.forward( | |
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} | |
) | |
assert torch.sigmoid(outputs["stop_tokens"]).data.max() <= 1.0 | |
assert torch.sigmoid(outputs["stop_tokens"]).data.min() >= 0.0 | |
optimizer.zero_grad() | |
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
loss = loss + criterion(outputs["model_outputs"], mel_postnet_spec, mel_lengths) + stop_loss | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
name, param = name_param | |
if name == "gst_layer.encoder.recurrence.weight_hh_l0": | |
continue | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |