Spaces:
Paused
Paused
import unittest | |
import numpy as np | |
import torch | |
from torch import optim | |
from TTS.vocoder.configs import WavegradConfig | |
from TTS.vocoder.models.wavegrad import Wavegrad, WavegradArgs | |
# pylint: disable=unused-variable | |
torch.manual_seed(1) | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
class WavegradTrainTest(unittest.TestCase): | |
def test_train_step(self): # pylint: disable=no-self-use | |
"""Test if all layers are updated in a basic training cycle""" | |
input_dummy = torch.rand(8, 1, 20 * 300).to(device) | |
mel_spec = torch.rand(8, 80, 20).to(device) | |
criterion = torch.nn.L1Loss().to(device) | |
args = WavegradArgs( | |
in_channels=80, | |
out_channels=1, | |
upsample_factors=[5, 5, 3, 2, 2], | |
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], | |
) | |
config = WavegradConfig(model_params=args) | |
model = Wavegrad(config) | |
model_ref = Wavegrad(config) | |
model.train() | |
model.to(device) | |
betas = np.linspace(1e-6, 1e-2, 1000) | |
model.compute_noise_level(betas) | |
model_ref.load_state_dict(model.state_dict()) | |
model_ref.to(device) | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
assert (param - param_ref).sum() == 0, param | |
count += 1 | |
optimizer = optim.Adam(model.parameters(), lr=0.001) | |
for i in range(5): | |
y_hat = model.forward(input_dummy, mel_spec, torch.rand(8).to(device)) | |
optimizer.zero_grad() | |
loss = criterion(y_hat, input_dummy) | |
loss.backward() | |
optimizer.step() | |
# check parameter changes | |
count = 0 | |
for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
# ignore pre-higway layer since it works conditional | |
# if count not in [145, 59]: | |
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
count, param.shape, param, param_ref | |
) | |
count += 1 | |