Spaces:
Paused
Paused
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig | |
from TTS.utils.manage import ModelManager | |
# Logging parameters | |
RUN_NAME = "GPT_XTTS_v2.0_LJSpeech_FT" | |
PROJECT_NAME = "XTTS_trainer" | |
DASHBOARD_LOGGER = "tensorboard" | |
LOGGER_URI = None | |
# Set here the path that the checkpoints will be saved. Default: ./run/training/ | |
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "run", "training") | |
# Training Parameters | |
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False | |
START_WITH_EVAL = True # if True it will star with evaluation | |
BATCH_SIZE = 3 # set here the batch size | |
GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps | |
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly. | |
# Define here the dataset that you want to use for the fine-tuning on. | |
config_dataset = BaseDatasetConfig( | |
formatter="ljspeech", | |
dataset_name="ljspeech", | |
path="/raid/datasets/LJSpeech-1.1_24khz/", | |
meta_file_train="/raid/datasets/LJSpeech-1.1_24khz/metadata.csv", | |
language="en", | |
) | |
# Add here the configs of the datasets | |
DATASETS_CONFIG_LIST = [config_dataset] | |
# Define the path where XTTS v2.0.1 files will be downloaded | |
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/") | |
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) | |
# DVAE files | |
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" | |
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" | |
# Set the path to the downloaded files | |
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) | |
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) | |
# download DVAE files if needed | |
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): | |
print(" > Downloading DVAE files!") | |
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) | |
# Download XTTS v2.0 checkpoint if needed | |
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json" | |
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth" | |
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. | |
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file | |
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file | |
# download XTTS v2.0 files if needed | |
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT): | |
print(" > Downloading XTTS v2.0 files!") | |
ModelManager._download_model_files( | |
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
) | |
# Training sentences generations | |
SPEAKER_REFERENCE = [ | |
"./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences | |
] | |
LANGUAGE = config_dataset.language | |
def main(): | |
# init args and config | |
model_args = GPTArgs( | |
max_conditioning_length=132300, # 6 secs | |
min_conditioning_length=66150, # 3 secs | |
debug_loading_failures=False, | |
max_wav_length=255995, # ~11.6 seconds | |
max_text_length=200, | |
mel_norm_file=MEL_NORM_FILE, | |
dvae_checkpoint=DVAE_CHECKPOINT, | |
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune | |
tokenizer_file=TOKENIZER_FILE, | |
gpt_num_audio_tokens=1026, | |
gpt_start_audio_token=1024, | |
gpt_stop_audio_token=1025, | |
gpt_use_masking_gt_prompt_approach=True, | |
gpt_use_perceiver_resampler=True, | |
) | |
# define audio config | |
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) | |
# training parameters config | |
config = GPTTrainerConfig( | |
output_path=OUT_PATH, | |
model_args=model_args, | |
run_name=RUN_NAME, | |
project_name=PROJECT_NAME, | |
run_description=""" | |
GPT XTTS training | |
""", | |
dashboard_logger=DASHBOARD_LOGGER, | |
logger_uri=LOGGER_URI, | |
audio=audio_config, | |
batch_size=BATCH_SIZE, | |
batch_group_size=48, | |
eval_batch_size=BATCH_SIZE, | |
num_loader_workers=8, | |
eval_split_max_size=256, | |
print_step=50, | |
plot_step=100, | |
log_model_step=1000, | |
save_step=10000, | |
save_n_checkpoints=1, | |
save_checkpoints=True, | |
# target_loss="loss", | |
print_eval=False, | |
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters. | |
optimizer="AdamW", | |
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, | |
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, | |
lr=5e-06, # learning rate | |
lr_scheduler="MultiStepLR", | |
# it was adjusted accordly for the new step scheme | |
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, | |
test_sentences=[ | |
{ | |
"text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", | |
"speaker_wav": SPEAKER_REFERENCE, | |
"language": LANGUAGE, | |
}, | |
{ | |
"text": "This cake is great. It's so delicious and moist.", | |
"speaker_wav": SPEAKER_REFERENCE, | |
"language": LANGUAGE, | |
}, | |
], | |
) | |
# init the model from config | |
model = GPTTrainer.init_from_config(config) | |
# load training samples | |
train_samples, eval_samples = load_tts_samples( | |
DATASETS_CONFIG_LIST, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs( | |
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter | |
skip_train_epoch=False, | |
start_with_eval=START_WITH_EVAL, | |
grad_accum_steps=GRAD_ACUMM_STEPS, | |
), | |
config, | |
output_path=OUT_PATH, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |
if __name__ == "__main__": | |
main() | |