File size: 9,199 Bytes
b875bd7
 
 
3fd0c0d
b875bd7
 
 
3fd0c0d
b875bd7
 
 
 
b54579f
b875bd7
 
3fd0c0d
 
b875bd7
 
b54579f
 
 
 
 
 
 
 
 
 
 
b875bd7
 
 
 
 
 
 
 
 
 
3fd0c0d
 
 
 
 
b875bd7
 
 
 
 
 
 
 
3fd0c0d
 
 
b875bd7
3fd0c0d
b875bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95ac39
 
b875bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0c0d
 
 
 
 
 
b875bd7
 
 
 
3fd0c0d
 
 
 
 
b54579f
 
b875bd7
 
 
 
 
 
 
3fd0c0d
b54579f
b875bd7
 
 
 
b3bac56
 
b54579f
b875bd7
 
 
 
b54579f
b875bd7
 
 
 
 
f4da48c
b875bd7
 
 
 
b54579f
b875bd7
b54579f
b875bd7
 
 
 
 
 
 
d95ac39
b875bd7
 
d95ac39
b875bd7
 
b54579f
b875bd7
 
 
 
 
f4da48c
b875bd7
 
 
 
b54579f
b875bd7
b54579f
b875bd7
 
 
 
 
 
 
d95ac39
b875bd7
 
d95ac39
b875bd7
b3bac56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# coding=utf-8
import os
import re
import argparse
import utils
import commons
import json
import torch
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from torch import no_grad, LongTensor
import gradio.processing_utils as gr_processing_utils
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"  # limit text and audio length in huggingface spaces

hps_ms = utils.get_hparams_from_file(r'config/config.json')

audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return gr_processing_utils.encode_url_or_file_to_base64(data["name"])


gr.Audio.postprocess = audio_postprocess

def get_text(text, hps):
    text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm, clean_text

def create_tts_fn(net_g_ms, speaker_id):
    def tts_fn(text, language, noise_scale, noise_scale_w, length_scale):
        text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
        if limitation:
            text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
            max_len = 100
            if text_len > max_len:
                return "Error: Text is too long", None
        if language == 0:
            text = f"[ZH]{text}[ZH]"
        elif language == 1:
            text = f"[JA]{text}[JA]"
        else:
            text = f"{text}"
        stn_tst, clean_text = get_text(text, hps_ms)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0).to(device)
            x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
            sid = LongTensor([speaker_id]).to(device)
            audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
                                   length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()

        return "Success", (22050, audio)
    return tts_fn

def change_lang(language):
    if language == 0:
        return 0.6, 0.668, 1.2
    else:
        return 0.6, 0.668, 1

download_audio_js = """
() =>{{
    let root = document.querySelector("body > gradio-app");
    if (root.shadowRoot != null)
        root = root.shadowRoot;
    let audio = root.querySelector("#tts-audio-{audio_id}").querySelector("audio");
    let text = root.querySelector("#input-text-{audio_id}").querySelector("textarea");
    if (audio == undefined)
        return;
    text = text.value;
    if (text == undefined)
        text = Math.floor(Math.random()*100000000);
    audio = audio.src;
    let oA = document.createElement("a");
    oA.download = text.substr(0, 20)+'.wav';
    oA.href = audio;
    document.body.appendChild(oA);
    oA.click();
    oA.remove();
}}
"""

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()
    device = torch.device(args.device)
    
    models = []
    with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    for i, info in models_info.items():
        sid = info['sid']
        name_en = info['name_en']
        name_zh = info['name_zh']
        title = info['title']
        cover = f"pretrained_models/{i}/{info['cover']}"
        example = info['example']
        language = info['language']
        net_g_ms = SynthesizerTrn(
            len(hps_ms.symbols),
            hps_ms.data.filter_length // 2 + 1,
            hps_ms.train.segment_size // hps_ms.data.hop_length,
            n_speakers=hps_ms.data.n_speakers,
            **hps_ms.model)
        utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
        _ = net_g_ms.eval().to(device)
        models.append((sid, name_en, name_zh, title, cover, example, language, net_g_ms, create_tts_fn(net_g_ms, sid)))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> vits-models\n"
            "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.vits-models)\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/drive/10QOk9NPgoKZUXkIhhuVaZ7SYra1MPMKH?usp=share_link)"
            " without queue and length limitation.(无需等待队列,并且没有长度限制)\n\n"
        )

        with gr.Tabs():
            with gr.TabItem("EN"):
                for (sid, name_en, name_zh, title, cover, example, language, net_g_ms, tts_fn) in models:
                    with gr.TabItem(name_en):
                        with gr.Row():
                            gr.Markdown(
                                '<div align="center">'
                                f'<a><strong>{title}</strong></a>'
                                f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                                '</div>'
                            )
                        with gr.Row():
                            with gr.Column():
                                input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value=example, elem_id=f"input-text-en-{name_en.replace(' ','')}")
                                lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
                                            type="index", value=language)
                                btn = gr.Button(value="Generate")
                                with gr.Row():
                                    ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
                                    nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
                                    ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
                            with gr.Column():
                                o1 = gr.Textbox(label="Output Message")
                                o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio-en-{name_en.replace(' ','')}")
                                download = gr.Button("Download Audio")
                            btn.click(tts_fn, inputs=[input_text, lang,  ns, nsw, ls], outputs=[o1, o2])
                            download.click(None, [], [], _js=download_audio_js.format(audio_id=f"en-{name_en.replace(' ','')}"))
                            lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
            with gr.TabItem("中文"):
                for (sid, name_en, name_zh, title, cover, example, language,  net_g_ms, tts_fn) in models:
                    with gr.TabItem(name_zh):
                        with gr.Row():
                            gr.Markdown(
                                '<div align="center">'
                                f'<a><strong>{title}</strong></a>'
                                f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                                '</div>'
                            )
                        with gr.Row():
                            with gr.Column():
                                input_text = gr.Textbox(label="文本 (100字上限)", lines=5, value=example, elem_id=f"input-text-zh-{name_zh}")
                                lang = gr.Dropdown(label="语言", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
                                            type="index", value="中文"if language == "Chinese" else "日语")
                                btn = gr.Button(value="生成")
                                with gr.Row():
                                    ns = gr.Slider(label="控制感情变化程度", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
                                    nsw = gr.Slider(label="控制音素发音长度", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
                                    ls = gr.Slider(label="控制整体语速", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
                            with gr.Column():
                                o1 = gr.Textbox(label="输出信息")
                                o2 = gr.Audio(label="输出音频", elem_id=f"tts-audio-zh-{name_zh}")
                                download = gr.Button("下载音频")
                            btn.click(tts_fn, inputs=[input_text, lang,  ns, nsw, ls], outputs=[o1, o2])
                            download.click(None, [], [], _js=download_audio_js.format(audio_id=f"zh-{name_zh}"))
                            lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
    app.queue(concurrency_count=1).launch(show_api=False, share=args.share)