Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,423 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage example:
diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors
"""
import glob
import json
import warnings
from argparse import ArgumentParser, Namespace
from importlib import import_module
import huggingface_hub
import torch
from huggingface_hub import hf_hub_download
from packaging import version
from ..utils import logging
from . import BaseDiffusersCLICommand
def conversion_command_factory(args: Namespace):
if args.use_auth_token:
warnings.warn(
"The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now"
" handled automatically if user is logged in."
)
return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors)
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
conversion_parser = parser.add_parser("fp16_safetensors")
conversion_parser.add_argument(
"--ckpt_id",
type=str,
help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
)
conversion_parser.add_argument(
"--fp16", action="store_true", help="If serializing the variables in FP16 precision."
)
conversion_parser.add_argument(
"--use_safetensors", action="store_true", help="If serializing in the safetensors format."
)
conversion_parser.add_argument(
"--use_auth_token",
action="store_true",
help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
)
conversion_parser.set_defaults(func=conversion_command_factory)
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
self.ckpt_id = ckpt_id
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
self.fp16 = fp16
self.use_safetensors = use_safetensors
if not self.use_safetensors and not self.fp16:
raise NotImplementedError(
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
)
def run(self):
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
raise ImportError(
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
" installation."
)
else:
from huggingface_hub import create_commit
from huggingface_hub._commit_api import CommitOperationAdd
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
with open(model_index, "r") as f:
pipeline_class_name = json.load(f)["_class_name"]
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
# here, but just to avoid any rough edge cases.
pipeline = pipeline_class.from_pretrained(
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
)
pipeline.save_pretrained(
self.local_ckpt_dir,
safe_serialization=True if self.use_safetensors else False,
variant="fp16" if self.fp16 else None,
)
self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
# Fetch all the paths.
if self.fp16:
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
elif self.use_safetensors:
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
# Prepare for the PR.
commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
operations = []
for path in modified_paths:
operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
# Open the PR.
commit_description = (
"Variables converted by the [`diffusers`' `fp16_safetensors`"
" CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
)
hub_pr_url = create_commit(
repo_id=self.ckpt_id,
operations=operations,
commit_message=commit_message,
commit_description=commit_description,
repo_type="model",
create_pr=True,
).pr_url
self.logger.info(f"PR created here: {hub_pr_url}.")
|