Spaces:
Running
on
Zero
Running
on
Zero
File size: 75,836 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-05-18 13:04:06
import os, sys, math, time, random, datetime
import numpy as np
from box import Box
from pathlib import Path
from loguru import logger
from copy import deepcopy
from omegaconf import OmegaConf
from einops import rearrange
from typing import Any, Dict, List, Optional, Tuple, Union
from datapipe.datasets import create_dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as udata
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.utils as vutils
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import util_net
from utils import util_common
from utils import util_image
from utils.util_ops import append_dims
import pyiqa
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from diffusers import EulerDiscreteScheduler
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import retrieve_timesteps
_base_seed = 10**6
_INTERPOLATION_MODE = 'bicubic'
_Latent_bound = {'min':-10.0, 'max':10.0}
_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\
'meticulous detailing, hyper sharpness, perfect without deformations'
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\
'painting, drawing, sketch, oil painting'
class TrainerBase:
def __init__(self, configs):
self.configs = configs
# setup distributed training: self.num_gpus, self.rank
self.setup_dist()
# setup seed
self.setup_seed()
def setup_dist(self):
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
timeout=datetime.timedelta(seconds=3600),
backend='nccl',
init_method='env://',
)
self.num_gpus = num_gpus
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
def setup_seed(self, seed=None, global_seeding=None):
if seed is None:
seed = self.configs.train.get('seed', 12345)
if global_seeding is None:
global_seeding = self.configs.train.get('global_seeding', False)
if not global_seeding:
seed += self.rank
torch.cuda.manual_seed(seed)
else:
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def init_logger(self):
if self.configs.resume:
assert self.configs.resume.endswith(".pth")
save_dir = Path(self.configs.resume).parents[1]
project_id = save_dir.name
else:
project_id = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
save_dir = Path(self.configs.save_dir) / project_id
if not save_dir.exists() and self.rank == 0:
save_dir.mkdir(parents=True)
# setting log counter
if self.rank == 0:
self.log_step = {phase: 1 for phase in ['train', 'val']}
self.log_step_img = {phase: 1 for phase in ['train', 'val']}
# text logging
logtxet_path = save_dir / 'training.log'
if self.rank == 0:
if logtxet_path.exists():
assert self.configs.resume
self.logger = logger
self.logger.remove()
self.logger.add(logtxet_path, format="{message}", mode='a', level='INFO')
self.logger.add(sys.stdout, format="{message}")
# tensorboard logging
log_dir = save_dir / 'tf_logs'
self.tf_logging = self.configs.train.tf_logging
if self.rank == 0 and self.tf_logging:
if not log_dir.exists():
log_dir.mkdir()
self.writer = SummaryWriter(str(log_dir))
# checkpoint saving
ckpt_dir = save_dir / 'ckpts'
self.ckpt_dir = ckpt_dir
if self.rank == 0 and (not ckpt_dir.exists()):
ckpt_dir.mkdir()
if 'ema_rate' in self.configs.train:
self.ema_rate = self.configs.train.ema_rate
assert isinstance(self.ema_rate, float), "Ema rate must be a float number"
ema_ckpt_dir = save_dir / 'ema_ckpts'
self.ema_ckpt_dir = ema_ckpt_dir
if self.rank == 0 and (not ema_ckpt_dir.exists()):
ema_ckpt_dir.mkdir()
# save images into local disk
self.local_logging = self.configs.train.local_logging
if self.rank == 0 and self.local_logging:
image_dir = save_dir / 'images'
if not image_dir.exists():
(image_dir / 'train').mkdir(parents=True)
(image_dir / 'val').mkdir(parents=True)
self.image_dir = image_dir
# logging the configurations
if self.rank == 0:
self.logger.info(OmegaConf.to_yaml(self.configs))
def close_logger(self):
if self.rank == 0 and self.tf_logging:
self.writer.close()
def resume_from_ckpt(self):
if self.configs.resume:
assert self.configs.resume.endswith(".pth") and os.path.isfile(self.configs.resume)
if self.rank == 0:
self.logger.info(f"=> Loading checkpoint from {self.configs.resume}")
ckpt = torch.load(self.configs.resume, map_location=f"cuda:{self.rank}")
util_net.reload_model(self.model, ckpt['state_dict'])
if self.configs.train.loss_coef.get('ldis', 0) > 0:
util_net.reload_model(self.discriminator, ckpt['state_dict_dis'])
torch.cuda.empty_cache()
# learning rate scheduler
self.iters_start = ckpt['iters_start']
for ii in range(1, self.iters_start+1):
self.adjust_lr(ii)
# logging
if self.rank == 0:
self.log_step = ckpt['log_step']
self.log_step_img = ckpt['log_step_img']
# EMA model
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / ("ema_"+Path(self.configs.resume).name)
self.logger.info(f"=> Loading EMA checkpoint from {str(ema_ckpt_path)}")
ema_ckpt = torch.load(ema_ckpt_path, map_location=f"cuda:{self.rank}")
util_net.reload_model(self.ema_model, ema_ckpt)
torch.cuda.empty_cache()
# AMP scaler
if self.amp_scaler is not None:
if "amp_scaler" in ckpt:
self.amp_scaler.load_state_dict(ckpt["amp_scaler"])
if self.rank == 0:
self.logger.info("Loading scaler from resumed state...")
if self.configs.get('discriminator', None) is not None:
if "amp_scaler_dis" in ckpt:
self.amp_scaler_dis.load_state_dict(ckpt["amp_scaler_dis"])
if self.rank == 0:
self.logger.info("Loading scaler (discriminator) from resumed state...")
# reset the seed
self.setup_seed(seed=self.iters_start)
else:
self.iters_start = 0
def setup_optimizaton(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(),
lr=self.configs.train.lr,
weight_decay=self.configs.train.weight_decay)
# amp settings
self.amp_scaler = torch.amp.GradScaler('cuda') if self.configs.train.use_amp else None
if self.configs.train.lr_schedule == 'cosin':
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.optimizer,
T_max=self.configs.train.iterations - self.configs.train.warmup_iterations,
eta_min=self.configs.train.lr_min,
)
if self.configs.train.loss_coef.get('ldis', 0) > 0:
self.optimizer_dis = torch.optim.Adam(
self.discriminator.parameters(),
lr=self.configs.train.lr_dis,
weight_decay=self.configs.train.weight_decay_dis,
)
self.amp_scaler_dis = torch.amp.GradScaler('cuda') if self.configs.train.use_amp else None
def prepare_compiling(self):
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_3#stable-diffusion-3
if not hasattr(self, "prepare_compiling_well") or (not self.prepare_compiling_well):
torch.set_float32_matmul_precision("high")
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
self.prepare_compiling_well = True
def build_model(self):
if self.configs.train.get("compile", True):
self.prepare_compiling()
params = self.configs.model.get('params', dict)
model = util_common.get_obj_from_str(self.configs.model.target)(**params)
model.cuda()
if not self.configs.train.start_mode: # Loading the starting model for evaluation
self.start_model = deepcopy(model)
assert self.configs.model.ckpt_start_path is not None
ckpt_start_path = self.configs.model.ckpt_start_path
if self.rank == 0:
self.logger.info(f"Loading the starting model from {ckpt_start_path}")
ckpt = torch.load(ckpt_start_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(self.start_model, ckpt)
self.freeze_model(self.start_model)
self.start_model.eval()
# delete the started timestep
start_timestep = max(self.configs.train.timesteps)
self.configs.train.timesteps.remove(start_timestep)
# end_timestep = min(self.configs.train.timesteps)
# self.configs.train.timesteps.remove(end_timestep)
# setting the training model
if self.configs.model.get('ckpt_path', None): # initialize if necessary
ckpt_path = self.configs.model.ckpt_path
if self.rank == 0:
self.logger.info(f"Initializing model from {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(model, ckpt)
if self.configs.model.get("compile", False):
if self.rank == 0:
self.logger.info("Compile the model...")
model.to(memory_format=torch.channels_last)
model = torch.compile(model, mode="max-autotune", fullgraph=False)
if self.num_gpus > 1:
model = DDP(model, device_ids=[self.rank,]) # wrap the network
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
self.ema_model = deepcopy(model)
self.freeze_model(self.ema_model)
self.model = model
# discriminator if necessary
if self.configs.train.loss_coef.get('ldis', 0) > 0:
assert hasattr(self.configs, 'discriminator')
params = self.configs.discriminator.get('params', dict)
discriminator = util_common.get_obj_from_str(self.configs.discriminator.target)(**params)
discriminator.cuda()
if self.configs.discriminator.get("compile", False):
if self.rank == 0:
self.logger.info("Compile the discriminator...")
discriminator.to(memory_format=torch.channels_last)
discriminator = torch.compile(discriminator, mode="max-autotune", fullgraph=False)
if self.num_gpus > 1:
discriminator = DDP(discriminator, device_ids=[self.rank,]) # wrap the network
if self.configs.train.loss_coef.get('ldis', 0) > 0:
if self.configs.discriminator.enable_grad_checkpoint:
if self.rank == 0:
self.logger.info("Activating gradient checkpointing for discriminator...")
self.set_grad_checkpointing(discriminator)
self.discriminator = discriminator
# build the stable diffusion
params = dict(self.configs.sd_pipe.params)
torch_dtype = params.pop('torch_dtype')
params['torch_dtype'] = get_torch_dtype(torch_dtype)
# loading the fp16 robust vae for sdxl: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
if self.configs.get('vae_fp16', None) is not None:
params_vae = dict(self.configs.vae_fp16.params)
params_vae['torch_dtype'] = torch.float16
pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path
if self.rank == 0:
self.logger.info(f'Loading improved vae from {pipe_id}...')
vae_pipe = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained(**params_vae)
if self.rank == 0:
self.logger.info('Loaded Done')
params['vae'] = vae_pipe
if ("StableDiffusion3" in self.configs.sd_pipe.target.split('.')[-1]
and self.configs.sd_pipe.get("model_quantization", False)):
if self.rank == 0:
self.logger.info(f'Loading the quantized transformer for SD3...')
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
params_model = dict(self.configs.model_nf4.params)
torch_dtype = params_model.pop('torch_dtype')
params_model['torch_dtype'] = get_torch_dtype(torch_dtype)
params_model['quantization_config'] = nf4_config
model_nf4 = util_common.get_obj_from_str(self.configs.model_nf4.target).from_pretrained(
**params_model
)
params['transformer'] = model_nf4
sd_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params)
if self.configs.get('scheduler', None) is not None:
pipe_id = self.configs.scheduler.target.split('.')[-1]
if self.rank == 0:
self.logger.info(f'Loading scheduler of {pipe_id}...')
sd_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config(
sd_pipe.scheduler.config
)
if self.rank == 0:
self.logger.info('Loaded Done')
if ("StableDiffusion3" in self.configs.sd_pipe.target.split('.')[-1]
and self.configs.sd_pipe.get("model_quantization", False)):
sd_pipe.enable_model_cpu_offload(gpu_id=self.rank,device='cuda')
else:
sd_pipe.to(f"cuda:{self.rank}")
# freezing model parameters
if hasattr(sd_pipe, 'unet'):
self.freeze_model(sd_pipe.unet)
if hasattr(sd_pipe, 'transformer'):
self.freeze_model(sd_pipe.transformer)
self.freeze_model(sd_pipe.vae)
# compiling
if self.configs.sd_pipe.get('compile', True):
if self.rank == 0:
self.logger.info('Compile the SD model...')
sd_pipe.set_progress_bar_config(disable=True)
if hasattr(sd_pipe, 'unet'):
sd_pipe.unet.to(memory_format=torch.channels_last)
sd_pipe.unet = torch.compile(sd_pipe.unet, mode="max-autotune", fullgraph=False)
if hasattr(sd_pipe, 'transformer'):
sd_pipe.transformer.to(memory_format=torch.channels_last)
sd_pipe.transformer = torch.compile(sd_pipe.transformer, mode="max-autotune", fullgraph=False)
sd_pipe.vae.to(memory_format=torch.channels_last)
sd_pipe.vae = torch.compile(sd_pipe.vae, mode="max-autotune", fullgraph=True)
# setting gradient checkpoint for vae
if self.configs.sd_pipe.get("enable_grad_checkpoint_vae", True):
if self.rank == 0:
self.logger.info("Activating gradient checkpointing for VAE...")
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder)
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder)
# setting gradient checkpoint for diffusion model
if self.configs.sd_pipe.enable_grad_checkpoint:
if self.rank == 0:
self.logger.info("Activating gradient checkpointing for SD...")
if hasattr(sd_pipe, 'unet'):
self.set_grad_checkpointing(sd_pipe.unet)
if hasattr(sd_pipe, 'transformer'):
self.set_grad_checkpointing(sd_pipe.transformer)
self.sd_pipe = sd_pipe
# latent LPIPS loss
if self.configs.train.loss_coef.get('llpips', 0) > 0:
params = self.configs.llpips.get('params', dict)
llpips_loss = util_common.get_obj_from_str(self.configs.llpips.target)(**params)
llpips_loss.cuda()
self.freeze_model(llpips_loss)
# loading the pre-trained model
ckpt_path = self.configs.llpips.ckpt_path
self.load_model(llpips_loss, ckpt_path, tag='latent lpips')
if self.configs.llpips.get("compile", True):
if self.rank == 0:
self.logger.info('Compile the llpips loss...')
llpips_loss.to(memory_format=torch.channels_last)
llpips_loss = torch.compile(llpips_loss, mode="max-autotune", fullgraph=True)
self.llpips_loss = llpips_loss
# model information
self.print_model_info()
torch.cuda.empty_cache()
def set_grad_checkpointing(self, model):
if hasattr(model, 'down_blocks'):
for module in model.down_blocks:
module.gradient_checkpointing = True
module.training = True
if hasattr(model, 'up_blocks'):
for module in model.up_blocks:
module.gradient_checkpointing = True
module.training = True
if hasattr(model, 'mid_blocks'):
model.mid_block.gradient_checkpointing = True
model.mid_block.training = True
def build_dataloader(self):
def _wrap_loader(loader):
while True: yield from loader
# make datasets
datasets = {'train': create_dataset(self.configs.data.get('train', dict)), }
if hasattr(self.configs.data, 'val') and self.rank == 0:
datasets['val'] = create_dataset(self.configs.data.get('val', dict))
if self.rank == 0:
for phase in datasets.keys():
length = len(datasets[phase])
self.logger.info('Number of images in {:s} data set: {:d}'.format(phase, length))
# make dataloaders
if self.num_gpus > 1:
sampler = udata.distributed.DistributedSampler(
datasets['train'],
num_replicas=self.num_gpus,
rank=self.rank,
)
else:
sampler = None
dataloaders = {'train': _wrap_loader(udata.DataLoader(
datasets['train'],
batch_size=self.configs.train.batch // self.num_gpus,
shuffle=False if self.num_gpus > 1 else True,
drop_last=True,
num_workers=min(self.configs.train.num_workers, 4),
pin_memory=True,
prefetch_factor=self.configs.train.get('prefetch_factor', 2),
worker_init_fn=my_worker_init_fn,
sampler=sampler,
))}
if hasattr(self.configs.data, 'val') and self.rank == 0:
dataloaders['val'] = udata.DataLoader(datasets['val'],
batch_size=self.configs.validate.batch,
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=True,
)
self.datasets = datasets
self.dataloaders = dataloaders
self.sampler = sampler
def print_model_info(self):
if self.rank == 0:
num_params = util_net.calculate_parameters(self.model) / 1000**2
# self.logger.info("Detailed network architecture:")
# self.logger.info(self.model.__repr__())
if self.configs.train.get('use_fsdp', False):
num_params *= self.num_gpus
self.logger.info(f"Number of parameters: {num_params:.2f}M")
if hasattr(self, 'discriminator'):
num_params = util_net.calculate_parameters(self.discriminator) / 1000**2
self.logger.info(f"Number of parameters in discriminator: {num_params:.2f}M")
def prepare_data(self, data, dtype=torch.float32, phase='train'):
data = {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
return data
def validation(self):
pass
def train(self):
self.init_logger() # setup logger: self.logger
self.build_dataloader() # prepare data: self.dataloaders, self.datasets, self.sampler
self.build_model() # build model: self.model, self.loss
self.setup_optimizaton() # setup optimization: self.optimzer, self.sheduler
self.resume_from_ckpt() # resume if necessary
self.model.train()
num_iters_epoch = math.ceil(len(self.datasets['train']) / self.configs.train.batch)
for ii in range(self.iters_start, self.configs.train.iterations):
self.current_iters = ii + 1
# prepare data
data = self.prepare_data(next(self.dataloaders['train']), phase='train')
# training phase
self.training_step(data)
# update ema model
if hasattr(self.configs.train, 'ema_rate') and self.rank == 0:
self.update_ema_model()
# validation phase
if ((ii+1) % self.configs.train.save_freq == 0 and
'val' in self.dataloaders and
self.rank == 0
):
self.validation()
#update learning rate
self.adjust_lr()
# save checkpoint
if (ii+1) % self.configs.train.save_freq == 0 and self.rank == 0:
self.save_ckpt()
if (ii+1) % num_iters_epoch == 0 and self.sampler is not None:
self.sampler.set_epoch(ii+1)
# close the tensorboard
self.close_logger()
def adjust_lr(self, current_iters=None):
base_lr = self.configs.train.lr
warmup_steps = self.configs.train.get("warmup_iterations", 0)
current_iters = self.current_iters if current_iters is None else current_iters
if current_iters <= warmup_steps:
for params_group in self.optimizer.param_groups:
params_group['lr'] = (current_iters / warmup_steps) * base_lr
else:
if hasattr(self, 'lr_scheduler'):
self.lr_scheduler.step()
def save_ckpt(self):
ckpt_path = self.ckpt_dir / 'model_{:d}.pth'.format(self.current_iters)
ckpt = {
'iters_start': self.current_iters,
'log_step': {phase:self.log_step[phase] for phase in ['train', 'val']},
'log_step_img': {phase:self.log_step_img[phase] for phase in ['train', 'val']},
'state_dict': self.model.state_dict(),
}
if self.amp_scaler is not None:
ckpt['amp_scaler'] = self.amp_scaler.state_dict()
if self.configs.train.loss_coef.get('ldis', 0) > 0:
ckpt['state_dict_dis'] = self.discriminator.state_dict()
if self.amp_scaler_dis is not None:
ckpt['amp_scaler_dis'] = self.amp_scaler_dis.state_dict()
torch.save(ckpt, ckpt_path)
if hasattr(self.configs.train, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / 'ema_model_{:d}.pth'.format(self.current_iters)
torch.save(self.ema_model.state_dict(), ema_ckpt_path)
def logging_image(self, im_tensor, tag, phase, add_global_step=False, nrow=8):
"""
Args:
im_tensor: b x c x h x w tensor
im_tag: str
phase: 'train' or 'val'
nrow: number of displays in each row
"""
assert self.tf_logging or self.local_logging
im_tensor = vutils.make_grid(im_tensor, nrow=nrow, normalize=True, scale_each=True) # c x H x W
if self.local_logging:
im_path = str(self.image_dir / phase / f"{tag}-{self.log_step_img[phase]}.png")
im_np = im_tensor.cpu().permute(1,2,0).numpy()
util_image.imwrite(im_np, im_path)
if self.tf_logging:
self.writer.add_image(
f"{phase}-{tag}-{self.log_step_img[phase]}",
im_tensor,
self.log_step_img[phase],
)
if add_global_step:
self.log_step_img[phase] += 1
def logging_text(self, text_list, phase):
"""
Args:
text_list: (b,) list
phase: 'train' or 'val'
"""
assert self.local_logging
if self.local_logging:
text_path = str(self.image_dir / phase / f"text-{self.log_step_img[phase]}.txt")
with open(text_path, 'w') as ff:
for text in text_list:
ff.write(text + '\n')
def logging_metric(self, metrics, tag, phase, add_global_step=False):
"""
Args:
metrics: dict
tag: str
phase: 'train' or 'val'
"""
if self.tf_logging:
tag = f"{phase}-{tag}"
if isinstance(metrics, dict):
self.writer.add_scalars(tag, metrics, self.log_step[phase])
else:
self.writer.add_scalar(tag, metrics, self.log_step[phase])
if add_global_step:
self.log_step[phase] += 1
else:
pass
def load_model(self, model, ckpt_path=None, tag='model'):
if self.rank == 0:
self.logger.info(f'Loading {tag} from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(model, ckpt)
if self.rank == 0:
self.logger.info('Loaded Done')
def freeze_model(self, net):
for params in net.parameters():
params.requires_grad = False
def unfreeze_model(self, net):
for params in net.parameters():
params.requires_grad = True
@torch.no_grad()
def update_ema_model(self):
decay = min(self.configs.train.ema_rate, (1 + self.current_iters) / (10 + self.current_iters))
target_params = dict(self.model.named_parameters())
# if hasattr(self.configs.train, 'ema_rate'):
# with FSDP.summon_full_params(self.model, writeback=True):
# target_params = dict(self.model.named_parameters())
# else:
# target_params = dict(self.model.named_parameters())
one_minus_decay = 1.0 - decay
for key, source_value in self.ema_model.named_parameters():
target_value = target_params[key]
if target_value.requires_grad:
source_value.sub_(one_minus_decay * (source_value - target_value.data))
class TrainerBaseSR(TrainerBase):
@torch.no_grad()
def _dequeue_and_enqueue(self):
"""It is the training pair pool for increasing the diversity in a batch.
Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
batch could not have different resize scaling factors. Therefore, we employ this training pair pool
to increase the degradation diversity in a batch.
"""
# initialize
b, c, h, w = self.lq.size()
if not hasattr(self, 'queue_size'):
self.queue_size = self.configs.degradation.get('queue_size', b*10)
if not hasattr(self, 'queue_lr'):
assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt.size()
self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt_latent.size()
self.queue_gt_latent = torch.zeros(self.queue_size, c, h, w).cuda()
self.queue_txt = ["", ] * self.queue_size
self.queue_ptr = 0
if self.queue_ptr == self.queue_size: # the pool is full
# do dequeue and enqueue
# shuffle
idx = torch.randperm(self.queue_size)
self.queue_lr = self.queue_lr[idx]
self.queue_gt = self.queue_gt[idx]
self.queue_gt_latent = self.queue_gt_latent[idx]
self.queue_txt = [self.queue_txt[ii] for ii in idx]
# get first b samples
lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
gt_latent_dequeue = self.queue_gt_latent[0:b, :, :, :].clone()
txt_dequeue = deepcopy(self.queue_txt[0:b])
# update the queue
self.queue_lr[0:b, :, :, :] = self.lq.clone()
self.queue_gt[0:b, :, :, :] = self.gt.clone()
self.queue_gt_latent[0:b, :, :, :] = self.gt_latent.clone()
self.queue_txt[0:b] = deepcopy(self.txt)
self.lq = lq_dequeue
self.gt = gt_dequeue
self.gt_latent = gt_latent_dequeue
self.txt = txt_dequeue
else:
# only do enqueue
self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
self.queue_gt_latent[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt_latent.clone()
self.queue_txt[self.queue_ptr:self.queue_ptr + b] = deepcopy(self.txt)
self.queue_ptr = self.queue_ptr + b
@torch.no_grad()
def prepare_data(self, data, phase='train'):
if phase == 'train' and self.configs.data.get(phase).get('type') == 'realesrgan':
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
if (not hasattr(self, 'sharpener')) and self.configs.degradation.get('use_sharp', False):
self.sharpener = USMSharp().cuda()
im_gt = data['gt'].cuda()
kernel1 = data['kernel1'].cuda()
kernel2 = data['kernel2'].cuda()
sinc_kernel = data['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
if isinstance(self.configs.degradation.sf, int):
sf = self.configs.degradation.sf
else:
assert len(self.configs.degradation.sf) == 2
sf = random.uniform(*self.configs.degradation.sf)
if self.configs.degradation.use_sharp:
im_gt = self.sharpener(im_gt)
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob']
if random.random() < self.configs.degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
if random.random() < self.configs.degradation['second_order_prob']:
# blur
if random.random() < self.configs.degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob2']
if random.random() < self.configs.degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# resize back
if self.configs.degradation.resize_back:
out = F.interpolate(out, size=(ori_h, ori_w), mode=_INTERPOLATION_MODE)
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
self.lq, self.gt, self.txt = im_lq, im_gt, data['txt']
if "gt_moment" not in data:
self.gt_latent = self.encode_first_stage(
im_gt.cuda(),
center_input_sample=True,
deterministic=self.configs.train.loss_coef.get('rkl', 0) > 0,
)
else:
self.gt_latent = self.encode_from_moment(
data['gt_moment'].cuda(),
deterministic=self.configs.train.loss_coef.get('rkl', 0) > 0,
)
if (not self.configs.train.use_text) or self.configs.data.train.params.random_crop:
self.txt = [_positive,] * im_lq.shape[0]
# training pair pool
self._dequeue_and_enqueue()
self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
batch = {'lq':self.lq, 'gt':self.gt, 'gt_latent':self.gt_latent, 'txt':self.txt}
elif phase == 'val':
resolution = self.configs.data.train.params.gt_size // self.configs.degradation.sf
batch = {}
batch['lq'] = data['lq'].cuda()
if 'gt' in data:
batch['gt'] = data['gt'].cuda()
batch['txt'] = [_positive, ] * data['lq'].shape[0]
else:
batch = {key:value.cuda().to(dtype=torch.float32) for key, value in data.items()}
return batch
@torch.no_grad()
def encode_from_moment(self, z, deterministic=True):
dist = DiagonalGaussianDistribution(z)
init_latents = dist.mode() if deterministic else dist.sample()
latents_mean = latents_std = None
if hasattr(self.sd_pipe.vae.config, "latents_mean") and self.sd_pipe.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.sd_pipe.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.sd_pipe.vae.config, "latents_std") and self.sd_pipe.vae.config.latents_std is not None:
latents_std = torch.tensor(self.sd_pipe.vae.config.latents_std).view(1, 4, 1, 1)
scaling_factor = self.sd_pipe.vae.config.scaling_factor
if latents_mean is not None and latents_std is not None:
latents_mean = latents_mean.to(device=z.device, dtype=z.dtype)
latents_std = latents_std.to(device=z.device, dtype=z.dtype)
init_latents = (init_latents - latents_mean) * scaling_factor / latents_std
else:
init_latents = init_latents * scaling_factor
return init_latents
@torch.no_grad()
@torch.amp.autocast('cuda')
def encode_first_stage(self, x, deterministic=False, center_input_sample=True):
if center_input_sample:
x = x * 2.0 - 1.0
latents_mean = latents_std = None
if hasattr(self.sd_pipe.vae.config, "latents_mean") and self.sd_pipe.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.sd_pipe.vae.config.latents_mean).view(1, -1, 1, 1)
if hasattr(self.sd_pipe.vae.config, "latents_std") and self.sd_pipe.vae.config.latents_std is not None:
latents_std = torch.tensor(self.sd_pipe.vae.config.latents_std).view(1, -1, 1, 1)
if deterministic:
partial_encode = lambda xx: self.sd_pipe.vae.encode(xx).latent_dist.mode()
else:
partial_encode = lambda xx: self.sd_pipe.vae.encode(xx).latent_dist.sample()
trunk_size = self.configs.sd_pipe.vae_split
if trunk_size < x.shape[0]:
init_latents = torch.cat([partial_encode(xx) for xx in x.split(trunk_size, 0)], dim=0)
else:
init_latents = partial_encode(x)
scaling_factor = self.sd_pipe.vae.config.scaling_factor
if latents_mean is not None and latents_std is not None:
latents_mean = latents_mean.to(device=x.device, dtype=x.dtype)
latents_std = latents_std.to(device=x.device, dtype=x.dtype)
init_latents = (init_latents - latents_mean) * scaling_factor / latents_std
else:
init_latents = init_latents * scaling_factor
return init_latents
@torch.no_grad()
@torch.amp.autocast('cuda')
def decode_first_stage(self, z, clamp=True):
z = z / self.sd_pipe.vae.config.scaling_factor
trunk_size = 1
if trunk_size < z.shape[0]:
out = torch.cat(
[self.sd_pipe.vae.decode(xx).sample for xx in z.split(trunk_size, 0)], dim=0,
)
else:
out = self.sd_pipe.vae.decode(z).sample
if clamp:
out = out.clamp(-1.0, 1.0)
return out
def get_loss_from_discrimnator(self, logits_fake):
if not (isinstance(logits_fake, list) or isinstance(logits_fake, tuple)):
g_loss = -torch.mean(logits_fake, dim=list(range(1, logits_fake.ndim)))
else:
g_loss = -torch.mean(logits_fake[0], dim=list(range(1, logits_fake[0].ndim)))
for current_logits in logits_fake[1:]:
g_loss += -torch.mean(current_logits, dim=list(range(1, current_logits.ndim)))
g_loss /= len(logits_fake)
return g_loss
def training_step(self, data):
current_bs = data['gt'].shape[0]
micro_bs = self.configs.train.microbatch
num_grad_accumulate = math.ceil(current_bs / micro_bs)
# grad zero
self.model.zero_grad()
# update generator
if self.configs.train.loss_coef.get('ldis', 0) > 0:
self.freeze_model(self.discriminator) # freeze discriminator
z0_pred_list = []
tt_list = []
prompt_embeds_list = []
for jj in range(0, current_bs, micro_bs):
micro_data = {key:value[jj:jj+micro_bs] for key, value in data.items()}
last_batch = (jj+micro_bs >= current_bs)
if last_batch or self.num_gpus <= 1:
losses, z0_pred, zt_noisy, tt = self.backward_step(micro_data, num_grad_accumulate)
else:
with self.model.no_sync():
losses, z0_pred, zt_noisy, tt = self.backward_step(micro_data, num_grad_accumulate)
if self.configs.train.loss_coef.get('ldis', 0) > 0:
z0_pred_list.append(z0_pred.detach())
tt_list.append(tt)
prompt_embeds_list.append(self.prompt_embeds.detach())
if self.configs.train.use_amp:
self.amp_scaler.step(self.optimizer)
self.amp_scaler.update()
else:
self.optimizer.step()
# update discriminator
if (self.configs.train.loss_coef.get('ldis', 0) > 0 and
(self.current_iters < self.configs.train.dis_init_iterations
or self.current_iters % self.configs.train.dis_update_freq == 0)
):
# grad zero
self.unfreeze_model(self.discriminator) # update discriminator
self.discriminator.zero_grad()
for ii, jj in enumerate(range(0, current_bs, micro_bs)):
micro_data = {key:value[jj:jj+micro_bs] for key, value in data.items()}
last_batch = (jj+micro_bs >= current_bs)
target = micro_data['gt_latent']
inputs = z0_pred_list[ii]
if last_batch or self.num_gpus <= 1:
logits = self.dis_backward_step(target, inputs, tt_list[ii], prompt_embeds_list[ii])
else:
with self.discriminator.no_sync():
logits = self.dis_backward_step(
target, inputs, tt_list[ii], prompt_embeds_list[ii]
)
# make logging
if self.current_iters % self.configs.train.dis_update_freq == 0 and self.rank == 0:
ndim = logits[0].ndim
losses['real'] = logits[0].detach().mean(dim=list(range(1, ndim)))
losses['fake'] = logits[1].detach().mean(dim=list(range(1, ndim)))
if self.configs.train.use_amp:
self.amp_scaler_dis.step(self.optimizer_dis)
self.amp_scaler_dis.update()
else:
self.optimizer_dis.step()
# make logging
if self.rank == 0:
self.log_step_train(
losses, tt, micro_data, z0_pred, zt_noisy, z0_gt=micro_data['gt_latent'],
)
@torch.no_grad()
def log_step_train(self, losses, tt, micro_data, z0_pred, zt_noisy, z0_gt=None, phase='train'):
'''
param losses: a dict recording the loss informations
'''
'''
param loss: a dict recording the loss informations
param micro_data: batch data
param tt: 1-D tensor, time steps
'''
if hasattr(self.configs.train, 'timesteps'):
if len(self.configs.train.timesteps) < 3:
record_steps = sorted(self.configs.train.timesteps)
else:
record_steps = [min(self.configs.train.timesteps),
max(self.configs.train.timesteps)]
else:
max_inference_steps = self.configs.train.max_inference_steps
record_steps = [1, max_inference_steps//2, max_inference_steps]
if ((self.current_iters // self.configs.train.dis_update_freq) %
(self.configs.train.log_freq[0] // self.configs.train.dis_update_freq) == 1):
self.loss_mean = {key:torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for key in losses.keys() if key not in ['real', 'fake']}
if self.configs.train.loss_coef.get('ldis', 0) > 0:
self.logit_mean = {key:torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for key in ['real', 'fake']}
self.loss_count = torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for jj in range(len(record_steps)):
for key, value in losses.items():
index = record_steps[jj] - 1
mask = torch.where(tt == index, torch.ones_like(tt), torch.zeros_like(tt))
assert value.shape == mask.shape
current_loss = torch.sum(value.detach() * mask)
if key in ['real', 'fake']:
self.logit_mean[key][jj] += current_loss.item()
else:
self.loss_mean[key][jj] += current_loss.item()
self.loss_count[jj] += mask.sum().item()
if ((self.current_iters // self.configs.train.dis_update_freq) %
(self.configs.train.log_freq[0] // self.configs.train.dis_update_freq) == 0):
if torch.any(self.loss_count == 0):
self.loss_count += 1e-4
for key in losses.keys():
if key in ['real', 'fake']:
self.logit_mean[key] /= self.loss_count
else:
self.loss_mean[key] /= self.loss_count
log_str = f"Train: {self.current_iters:06d}/{self.configs.train.iterations:06d}, "
valid_keys = sorted([key for key in losses.keys() if key not in ['loss', 'real', 'fake']])
for ii, key in enumerate(valid_keys):
if ii == 0:
log_str += f"{key}"
else:
log_str += f"/{key}"
if self.configs.train.loss_coef.get('ldis', 0) > 0:
log_str += "/real/fake:"
else:
log_str += ":"
for jj, current_record in enumerate(record_steps):
for ii, key in enumerate(valid_keys):
if ii == 0:
if key in ['dis', 'ldis']:
log_str += 't({:d}):{:+6.4f}'.format(
current_record,
self.loss_mean[key][jj].item(),
)
elif key in ['lpips', 'ldif']:
log_str += 't({:d}):{:4.2f}'.format(
current_record,
self.loss_mean[key][jj].item(),
)
elif key == 'llpips':
log_str += 't({:d}):{:5.3f}'.format(
current_record,
self.loss_mean[key][jj].item(),
)
else:
log_str += 't({:d}):{:.1e}'.format(
current_record,
self.loss_mean[key][jj].item(),
)
else:
if key in ['dis', 'ldis']:
log_str += f"/{self.loss_mean[key][jj].item():+6.4f}"
elif key in ['lpips', 'ldif']:
log_str += f"/{self.loss_mean[key][jj].item():4.2f}"
elif key == 'llpips':
log_str += f"/{self.loss_mean[key][jj].item():5.3f}"
else:
log_str += f"/{self.loss_mean[key][jj].item():.1e}"
if self.configs.train.loss_coef.get('ldis', 0) > 0:
log_str += f"/{self.logit_mean['real'][jj].item():+4.2f}"
log_str += f"/{self.logit_mean['fake'][jj].item():+4.2f}, "
else:
log_str += f", "
log_str += 'lr:{:.1e}'.format(self.optimizer.param_groups[0]['lr'])
self.logger.info(log_str)
self.logging_metric(self.loss_mean, tag='Loss', phase=phase, add_global_step=True)
if ((self.current_iters // self.configs.train.dis_update_freq) %
(self.configs.train.log_freq[1] // self.configs.train.dis_update_freq) == 0):
if zt_noisy is not None:
xt_pred = self.decode_first_stage(zt_noisy.detach())
self.logging_image(xt_pred, tag='xt-noisy', phase=phase, add_global_step=False)
if z0_pred is not None:
x0_pred = self.decode_first_stage(z0_pred.detach())
self.logging_image(x0_pred, tag='x0-pred', phase=phase, add_global_step=False)
if z0_gt is not None:
x0_recon = self.decode_first_stage(z0_gt.detach())
self.logging_image(x0_recon, tag='x0-recons', phase=phase, add_global_step=False)
if 'txt' in micro_data:
self.logging_text(micro_data['txt'], phase=phase)
self.logging_image(micro_data['lq'], tag='LQ', phase=phase, add_global_step=False)
self.logging_image(micro_data['gt'], tag='GT', phase=phase, add_global_step=True)
if ((self.current_iters // self.configs.train.dis_update_freq) %
(self.configs.train.save_freq // self.configs.train.dis_update_freq) == 1):
self.tic = time.time()
if ((self.current_iters // self.configs.train.dis_update_freq) %
(self.configs.train.save_freq // self.configs.train.dis_update_freq) == 0):
self.toc = time.time()
elaplsed = (self.toc - self.tic)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*100)
@torch.no_grad()
def validation(self, phase='val'):
torch.cuda.empty_cache()
if not (self.configs.validate.use_ema and hasattr(self.configs.train, 'ema_rate')):
self.model.eval()
if self.configs.train.start_mode:
start_noise_predictor = self.ema_model if self.configs.validate.use_ema else self.model
intermediate_noise_predictor = None
else:
start_noise_predictor = self.start_model
intermediate_noise_predictor = self.ema_model if self.configs.validate.use_ema else self.model
num_iters_epoch = math.ceil(len(self.datasets[phase]) / self.configs.validate.batch)
mean_psnr = mean_lpips = 0
for jj, data in enumerate(self.dataloaders[phase]):
data = self.prepare_data(data, phase='val')
with torch.amp.autocast('cuda'):
xt_progressive, x0_progressive = self.sample(
image_lq=data['lq'],
prompt=[_positive,]*data['lq'].shape[0],
target_size=tuple(data['gt'].shape[-2:]),
start_noise_predictor=start_noise_predictor,
intermediate_noise_predictor=intermediate_noise_predictor,
)
x0 = xt_progressive[-1]
num_inference_steps = len(xt_progressive)
if 'gt' in data:
if not hasattr(self, 'psnr_metric'):
self.psnr_metric = pyiqa.create_metric(
'psnr',
test_y_channel=self.configs.train.get('val_y_channel', True),
color_space='ycbcr',
device=torch.device("cuda"),
)
if not hasattr(self, 'lpips_metric'):
self.lpips_metric = pyiqa.create_metric(
'lpips-vgg',
device=torch.device("cuda"),
as_loss=False,
)
x0_normalize = util_image.normalize_th(x0, mean=0.5, std=0.5, reverse=True)
mean_psnr += self.psnr_metric(x0_normalize, data['gt']).sum().item()
with torch.amp.autocast('cuda'), torch.no_grad():
mean_lpips += self.lpips_metric(x0_normalize, data['gt']).sum().item()
if (jj + 1) % self.configs.validate.log_freq == 0:
self.logger.info(f'Validation: {jj+1:02d}/{num_iters_epoch:02d}...')
self.logging_image(data['gt'], tag='GT', phase=phase, add_global_step=False)
xt_progressive = rearrange(torch.cat(xt_progressive, dim=1), 'b (k c) h w -> (b k) c h w', c=3)
self.logging_image(
xt_progressive,
tag='sample-progress',
phase=phase,
add_global_step=False,
nrow=num_inference_steps,
)
x0_progressive = rearrange(torch.cat(x0_progressive, dim=1), 'b (k c) h w -> (b k) c h w', c=3)
self.logging_image(
x0_progressive,
tag='x0-progress',
phase=phase,
add_global_step=False,
nrow=num_inference_steps,
)
self.logging_image(data['lq'], tag='LQ', phase=phase, add_global_step=True)
if 'gt' in data:
mean_psnr /= len(self.datasets[phase])
mean_lpips /= len(self.datasets[phase])
self.logger.info(f'Validation Metric: PSNR={mean_psnr:5.2f}, LPIPS={mean_lpips:6.4f}...')
self.logging_metric(mean_psnr, tag='PSNR', phase=phase, add_global_step=False)
self.logging_metric(mean_lpips, tag='LPIPS', phase=phase, add_global_step=True)
self.logger.info("="*100)
if not (self.configs.validate.use_ema and hasattr(self.configs.train, 'ema_rate')):
self.model.train()
torch.cuda.empty_cache()
def backward_step(self, micro_data, num_grad_accumulate):
loss_coef = self.configs.train.loss_coef
losses = {}
z0_gt = micro_data['gt_latent']
tt = torch.tensor(
random.choices(self.configs.train.timesteps, k=z0_gt.shape[0]),
dtype=torch.int64,
device=f"cuda:{self.rank}",
) - 1
with torch.autocast(device_type="cuda", enabled=self.configs.train.use_amp):
model_pred = self.model(
micro_data['lq'], tt, sample_posterior=False, center_input_sample=True,
)
z0_pred, zt_noisy_pred, z0_lq = self.sd_forward_step(
prompt=micro_data['txt'],
latents_hq=micro_data['gt_latent'],
image_lq=micro_data['lq'],
image_hq=micro_data['gt'],
model_pred=model_pred,
timesteps=tt,
)
# diffusion loss
if loss_coef.get('ldif', 0) > 0:
if self.configs.train.loss_type == 'L2':
ldif_loss = F.mse_loss(z0_pred, z0_gt, reduction='none')
elif self.configs.train.loss_type == 'L1':
ldif_loss = F.l1_loss(z0_pred, z0_gt, reduction='none')
else:
raise TypeError(f"Unsupported Loss type for Diffusion: {self.configs.train.loss_type}")
ldif_loss = torch.mean(ldif_loss, dim=list(range(1, z0_gt.ndim)))
losses['ldif'] = ldif_loss * loss_coef['ldif']
# Gaussian constraints
if loss_coef.get('kl', 0) > 0:
losses['kl'] = model_pred.kl() * loss_coef['kl']
if loss_coef.get('pkl', 0) > 0:
losses['pkl'] = model_pred.partial_kl() * loss_coef['pkl']
if loss_coef.get('rkl', 0) > 0:
other = Box(
{'mean': z0_gt-z0_lq,
'var':torch.ones_like(z0_gt),
'logvar':torch.zeros_like(z0_gt)}
)
losses['rkl'] = model_pred.kl(other) * loss_coef['rkl']
# discriminator loss
if loss_coef.get('ldis', 0) > 0:
if self.current_iters > self.configs.train.dis_init_iterations:
logits_fake = self.discriminator(
torch.clamp(z0_pred, min=_Latent_bound['min'], max=_Latent_bound['max']),
timestep=tt,
encoder_hidden_states=self.prompt_embeds,
)
losses['ldis'] = self.get_loss_from_discrimnator(logits_fake) * loss_coef['ldis']
else:
losses['ldis'] = torch.zeros((z0_gt.shape[0], ), dtype=torch.float32).cuda()
# perceptual loss
if loss_coef.get('llpips', 0) > 0:
losses['llpips'] = self.llpips_loss(z0_pred, z0_gt).view(-1) * loss_coef['llpips']
for key in ['ldif', 'kl', 'rkl', 'pkl', 'ldis', 'llpips']:
if loss_coef.get(key, 0) > 0:
if not 'loss' in losses:
losses['loss'] = losses[key]
else:
losses['loss'] = losses['loss'] + losses[key]
loss = losses['loss'].mean() / num_grad_accumulate
if self.amp_scaler is None:
loss.backward()
else:
self.amp_scaler.scale(loss).backward()
return losses, z0_pred, zt_noisy_pred, tt
def dis_backward_step(self, target, inputs, tt, prompt_embeds):
with torch.autocast(device_type="cuda", enabled=self.configs.train.use_amp):
logits_real = self.discriminator(target, tt, prompt_embeds)
inputs = inputs.clamp(min=_Latent_bound['min'], max=_Latent_bound['max'])
logits_fake = self.discriminator(inputs, tt, prompt_embeds)
loss = hinge_d_loss(logits_real, logits_fake).mean()
if self.amp_scaler_dis is None:
loss.backward()
else:
self.amp_scaler_dis.scale(loss).backward()
return logits_real[-1], logits_fake[-1]
def scale_sd_input(
self,
x:torch.Tensor,
sigmas: torch.Tensor = None,
timestep: torch.Tensor = None,
) :
if sigmas is None:
if not self.sd_pipe.scheduler.sigmas.numel() == (self.configs.sd_pipe.num_train_steps + 1):
self.sd_pipe.scheduler = EulerDiscreteScheduler.from_pipe(
self.configs.sd_pipe.params.pretrained_model_name_or_path,
cache_dir=self.configs.sd_pipe.params.cache_dir,
subfolder='scheduler',
)
assert self.sd_pipe.scheduler.sigmas.numel() == (self.configs.sd_pipe.num_train_steps + 1)
sigmas = self.sd_pipe.scheduler.sigmas.flip(0).to(x.device)[timestep] # (b,)
sigmas = append_dims(sigmas, x.ndim)
if sigmas.ndim < x.ndim:
sigmas = append_dims(sigmas, x.ndim)
out = x / ((sigmas**2 + 1) ** 0.5)
return out
def prepare_lq_latents(
self,
image_lq: torch.Tensor,
timestep: torch.Tensor,
height: int = 512,
width: int = 512,
start_noise_predictor: torch.nn.Module = None,
):
"""
Input:
image_lq: low-quality image, torch.Tensor, range in [0, 1]
hight, width: resolution for high-quality image
"""
image_lq_up = F.interpolate(image_lq, size=(height, width), mode='bicubic')
init_latents = self.encode_first_stage(
image_lq_up, deterministic=False, center_input_sample=True,
)
if start_noise_predictor is None:
model_pred = None
else:
model_pred = start_noise_predictor(
image_lq, timestep, sample_posterior=False, center_input_sample=True,
)
# get latents
sigmas = self.sigmas_cache[timestep]
sigmas = append_dims(sigmas, init_latents.ndim)
latents = self.add_noise(init_latents, sigmas, model_pred)
return latents
def add_noise(self, latents, sigmas, model_pred=None):
if sigmas.ndim < latents.ndim:
sigmas = append_dims(sigmas, latents.ndim)
if model_pred is None:
noise = torch.randn_like(latents)
zt_noisy = latents + sigmas * noise
else:
if self.configs.train.loss_coef.get('rkl', 0) > 0:
mean, std = model_pred.mean, model_pred.std
zt_noisy = latents + mean + sigmas * std * torch.randn_like(latents)
else:
zt_noisy = latents + sigmas * model_pred.sample()
return zt_noisy
def retrieve_timesteps(self):
device=torch.device(f"cuda:{self.rank}")
num_inference_steps = self.configs.train.get('num_inference_steps', 5)
timesteps = np.linspace(
max(self.configs.train.timesteps), 0, num_inference_steps,
endpoint=False, dtype=np.int64,
) - 1
timesteps = torch.from_numpy(timesteps).to(device)
self.sd_pipe.scheduler.timesteps = timesteps
sigmas = self.sigmas_cache[timesteps.long()]
sigma_last = torch.tensor([0,], dtype=torch.float32).to(device=sigmas.device)
sigmas = torch.cat([sigmas, sigma_last]).type(torch.float32)
self.sd_pipe.scheduler.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sd_pipe.scheduler._step_index = None
self.sd_pipe.scheduler._begin_index = None
return self.sd_pipe.scheduler.timesteps, num_inference_steps
class TrainerSDTurboSR(TrainerBaseSR):
def sd_forward_step(
self,
prompt: Union[str, List[str]] = None,
latents_hq: Optional[torch.Tensor] = None,
image_lq: torch.Tensor = None,
image_hq: torch.Tensor = None,
model_pred: DiagonalGaussianDistribution = None,
timesteps: List[int] = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image_lq (`torch.Tensor`): The low-quality image(s) for enhancement, range in [0, 1].
image_hq (`torch.Tensor`): The high-quality image(s) for enhancement, range in [0, 1].
noise_pred (`torch.Tensor`): Predicted noise by the noise prediction model
latents_hq (`torch.Tensor`, *optional*):
Pre-generated high-quality latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. If not provided, a latents tensor will be generated by sampling using vae .
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
aesthetic_score (`float`, *optional*, defaults to 6.0):
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
simulate an aesthetic score of the generated image by influencing the negative text condition.
"""
device=torch.device(f"cuda:{self.rank}")
# Encode input prompt
prompt_embeds, negative_prompt_embeds = self.sd_pipe.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
)
self.prompt_embeds = prompt_embeds
# select the noise level, self.scheduler.sigmas, [1001,], descending
if not hasattr(self, 'sigmas_cache'):
assert self.sd_pipe.scheduler.sigmas.numel() == (self.configs.sd_pipe.num_train_steps + 1)
self.sigmas_cache = self.sd_pipe.scheduler.sigmas.flip(0)[1:].to(device) #ascending,1000
sigmas = self.sigmas_cache[timesteps] # (b,)
# Prepare input for SD
height, width = image_hq.shape[-2:]
if self.configs.train.start_mode:
image_lq_up = F.interpolate(image_lq, size=(height, width), mode='bicubic')
zt_clean = self.encode_first_stage(
image_lq_up, center_input_sample=True,
deterministic=self.configs.train.loss_coef.get('rkl', 0) > 0,
)
else:
if latents_hq is None:
zt_clean = self.encode_first_stage(
image_hq, center_input_sample=True, deterministic=False,
)
else:
zt_clean = latents_hq
sigmas = append_dims(sigmas, zt_clean.ndim)
zt_noisy = self.add_noise(zt_clean, sigmas, model_pred)
prompt_embeds = prompt_embeds.to(device)
zt_noisy_scale = self.scale_sd_input(zt_noisy, sigmas)
eps_pred = self.sd_pipe.unet(
zt_noisy_scale,
timesteps,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=None,
added_cond_kwargs=None,
return_dict=False,
)[0] # eps-mode for sdxl and sdxl-refiner
if self.configs.train.noise_detach:
z0_pred = zt_noisy.detach() - sigmas * eps_pred
else:
z0_pred = zt_noisy - sigmas * eps_pred
return z0_pred, zt_noisy, zt_clean
@torch.no_grad()
def sample(
self,
image_lq: torch.Tensor,
prompt: Union[str, List[str]] = None,
target_size: Tuple[int, int] = (1024, 1024),
start_noise_predictor: torch.nn.Module = None,
intermediate_noise_predictor: torch.nn.Module = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image_lq (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
The image(s) to modify with the pipeline.
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
The required height and width of the super-resolved image.
strength (`float`, *optional*, defaults to 0.3):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
"""
device=torch.device(f"cuda:{self.rank}")
batch_size = image_lq.shape[0]
# Encode input prompt
prompt_embeds, negative_prompt_embeds = self.sd_pipe.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
)
timesteps, num_inference_steps = self.retrieve_timesteps()
latent_timestep = timesteps[:1].repeat(batch_size)
# Prepare latent variables
height, width = target_size
latents = self.prepare_lq_latents(image_lq, latent_timestep.long(), height, width, start_noise_predictor)
# Prepare extra step kwargs.
extra_step_kwargs = self.sd_pipe.prepare_extra_step_kwargs(None, 0.0)
prompt_embeds = prompt_embeds.to(device)
x0_progressive = []
images_progressive = []
for i, t in enumerate(timesteps):
latents_scaled = self.sd_pipe.scheduler.scale_model_input(latents, t)
# predict the noise residual
eps_pred = self.sd_pipe.unet(
latents_scaled,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
added_cond_kwargs=None,
return_dict=False,
)[0]
z0_pred = latents - self.sigmas_cache[t.long()] * eps_pred
# compute the previous noisy sample x_t -> x_t-1
if intermediate_noise_predictor is not None and i + 1 < len(timesteps):
t_next = timesteps[i+1]
noise = intermediate_noise_predictor(image_lq, t_next, center_input_sample=True)
else:
noise = None
extra_step_kwargs['noise'] = noise
latents = self.sd_pipe.scheduler.step(eps_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
image = self.decode_first_stage(latents)
images_progressive.append(image)
x0_pred = self.decode_first_stage(z0_pred)
x0_progressive.append(x0_pred)
return images_progressive, x0_progressive
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def hinge_d_loss(
logits_real: Union[torch.Tensor, List[torch.Tensor,]],
logits_fake: Union[torch.Tensor, List[torch.Tensor,]],
):
def _hinge_d_loss(logits_real, logits_fake):
loss_real = F.relu(1.0 - logits_real)
loss_fake = F.relu(1.0 + logits_fake)
d_loss = 0.5 * (loss_real + loss_fake)
loss = d_loss.mean(dim=list(range(1, logits_real.ndim)))
return loss
if not (isinstance(logits_real, list) or isinstance(logits_real, tuple)):
loss = _hinge_d_loss(logits_real, logits_fake)
else:
loss = _hinge_d_loss(logits_real[0], logits_fake[0])
for xx, yy in zip(logits_real[1:], logits_fake[1:]):
loss += _hinge_d_loss(xx, yy)
loss /= len(logits_real)
return loss
def get_torch_dtype(torch_dtype: str):
if torch_dtype == 'torch.float16':
return torch.float16
elif torch_dtype == 'torch.bfloat16':
return torch.bfloat16
elif torch_dtype == 'torch.float32':
return torch.float32
else:
raise ValueError(f'Unexpected torch dtype:{torch_dtype}')
|