File size: 12,829 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""
A standalone PyTorch implementation for fast and efficient bicubic resampling.
The resulting values are the same to MATLAB function imresize('bicubic').
## Author:      Sanghyun Son
## Email:       sonsang35@gmail.com (primary), thstkdgus35@snu.ac.kr (secondary)
## Version:     1.2.0
## Last update: July 9th, 2020 (KST)
Dependency: torch
Example::
>>> import torch
>>> import core
>>> x = torch.arange(16).float().view(1, 1, 4, 4)
>>> y = core.imresize(x, sizes=(3, 3))
>>> print(y)
tensor([[[[ 0.7506,  2.1004,  3.4503],
          [ 6.1505,  7.5000,  8.8499],
          [11.5497, 12.8996, 14.2494]]]])
"""

import math
import typing

import torch
from torch.nn import functional as F

__all__ = ['imresize']

_I = typing.Optional[int]
_D = typing.Optional[torch.dtype]


def nearest_contribution(x: torch.Tensor) -> torch.Tensor:
    range_around_0 = torch.logical_and(x.gt(-0.5), x.le(0.5))
    cont = range_around_0.to(dtype=x.dtype)
    return cont


def linear_contribution(x: torch.Tensor) -> torch.Tensor:
    ax = x.abs()
    range_01 = ax.le(1)
    cont = (1 - ax) * range_01.to(dtype=x.dtype)
    return cont


def cubic_contribution(x: torch.Tensor, a: float = -0.5) -> torch.Tensor:
    ax = x.abs()
    ax2 = ax * ax
    ax3 = ax * ax2

    range_01 = ax.le(1)
    range_12 = torch.logical_and(ax.gt(1), ax.le(2))

    cont_01 = (a + 2) * ax3 - (a + 3) * ax2 + 1
    cont_01 = cont_01 * range_01.to(dtype=x.dtype)

    cont_12 = (a * ax3) - (5 * a * ax2) + (8 * a * ax) - (4 * a)
    cont_12 = cont_12 * range_12.to(dtype=x.dtype)

    cont = cont_01 + cont_12
    return cont


def gaussian_contribution(x: torch.Tensor, sigma: float = 2.0) -> torch.Tensor:
    range_3sigma = (x.abs() <= 3 * sigma + 1)
    # Normalization will be done after
    cont = torch.exp(-x.pow(2) / (2 * sigma**2))
    cont = cont * range_3sigma.to(dtype=x.dtype)
    return cont


def discrete_kernel(kernel: str, scale: float, antialiasing: bool = True) -> torch.Tensor:
    '''
    For downsampling with integer scale only.
    '''
    downsampling_factor = int(1 / scale)
    if kernel == 'cubic':
        kernel_size_orig = 4
    else:
        raise ValueError('Pass!')

    if antialiasing:
        kernel_size = kernel_size_orig * downsampling_factor
    else:
        kernel_size = kernel_size_orig

    if downsampling_factor % 2 == 0:
        a = kernel_size_orig * (0.5 - 1 / (2 * kernel_size))
    else:
        kernel_size -= 1
        a = kernel_size_orig * (0.5 - 1 / (kernel_size + 1))

    with torch.no_grad():
        r = torch.linspace(-a, a, steps=kernel_size)
        k = cubic_contribution(r).view(-1, 1)
        k = torch.matmul(k, k.t())
        k /= k.sum()

    return k


def reflect_padding(x: torch.Tensor, dim: int, pad_pre: int, pad_post: int) -> torch.Tensor:
    '''
    Apply reflect padding to the given Tensor.
    Note that it is slightly different from the PyTorch functional.pad,
    where boundary elements are used only once.
    Instead, we follow the MATLAB implementation
    which uses boundary elements twice.
    For example,
    [a, b, c, d] would become [b, a, b, c, d, c] with the PyTorch implementation,
    while our implementation yields [a, a, b, c, d, d].
    '''
    b, c, h, w = x.size()
    if dim == 2 or dim == -2:
        padding_buffer = x.new_zeros(b, c, h + pad_pre + pad_post, w)
        padding_buffer[..., pad_pre:(h + pad_pre), :].copy_(x)
        for p in range(pad_pre):
            padding_buffer[..., pad_pre - p - 1, :].copy_(x[..., p, :])
        for p in range(pad_post):
            padding_buffer[..., h + pad_pre + p, :].copy_(x[..., -(p + 1), :])
    else:
        padding_buffer = x.new_zeros(b, c, h, w + pad_pre + pad_post)
        padding_buffer[..., pad_pre:(w + pad_pre)].copy_(x)
        for p in range(pad_pre):
            padding_buffer[..., pad_pre - p - 1].copy_(x[..., p])
        for p in range(pad_post):
            padding_buffer[..., w + pad_pre + p].copy_(x[..., -(p + 1)])

    return padding_buffer


def padding(x: torch.Tensor,
            dim: int,
            pad_pre: int,
            pad_post: int,
            padding_type: typing.Optional[str] = 'reflect') -> torch.Tensor:
    if padding_type is None:
        return x
    elif padding_type == 'reflect':
        x_pad = reflect_padding(x, dim, pad_pre, pad_post)
    else:
        raise ValueError('{} padding is not supported!'.format(padding_type))

    return x_pad


def get_padding(base: torch.Tensor, kernel_size: int, x_size: int) -> typing.Tuple[int, int, torch.Tensor]:
    base = base.long()
    r_min = base.min()
    r_max = base.max() + kernel_size - 1

    if r_min <= 0:
        pad_pre = -r_min
        pad_pre = pad_pre.item()
        base += pad_pre
    else:
        pad_pre = 0

    if r_max >= x_size:
        pad_post = r_max - x_size + 1
        pad_post = pad_post.item()
    else:
        pad_post = 0

    return pad_pre, pad_post, base


def get_weight(dist: torch.Tensor,
               kernel_size: int,
               kernel: str = 'cubic',
               sigma: float = 2.0,
               antialiasing_factor: float = 1) -> torch.Tensor:
    buffer_pos = dist.new_zeros(kernel_size, len(dist))
    for idx, buffer_sub in enumerate(buffer_pos):
        buffer_sub.copy_(dist - idx)

    # Expand (downsampling) / Shrink (upsampling) the receptive field.
    buffer_pos *= antialiasing_factor
    if kernel == 'cubic':
        weight = cubic_contribution(buffer_pos)
    elif kernel == 'gaussian':
        weight = gaussian_contribution(buffer_pos, sigma=sigma)
    else:
        raise ValueError('{} kernel is not supported!'.format(kernel))

    weight /= weight.sum(dim=0, keepdim=True)
    return weight


def reshape_tensor(x: torch.Tensor, dim: int, kernel_size: int) -> torch.Tensor:
    # Resize height
    if dim == 2 or dim == -2:
        k = (kernel_size, 1)
        h_out = x.size(-2) - kernel_size + 1
        w_out = x.size(-1)
    # Resize width
    else:
        k = (1, kernel_size)
        h_out = x.size(-2)
        w_out = x.size(-1) - kernel_size + 1

    unfold = F.unfold(x, k)
    unfold = unfold.view(unfold.size(0), -1, h_out, w_out)
    return unfold


def reshape_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _I, _I, int, int]:
    if x.dim() == 4:
        b, c, h, w = x.size()
    elif x.dim() == 3:
        c, h, w = x.size()
        b = None
    elif x.dim() == 2:
        h, w = x.size()
        b = c = None
    else:
        raise ValueError('{}-dim Tensor is not supported!'.format(x.dim()))

    x = x.view(-1, 1, h, w)
    return x, b, c, h, w


def reshape_output(x: torch.Tensor, b: _I, c: _I) -> torch.Tensor:
    rh = x.size(-2)
    rw = x.size(-1)
    # Back to the original dimension
    if b is not None:
        x = x.view(b, c, rh, rw)  # 4-dim
    else:
        if c is not None:
            x = x.view(c, rh, rw)  # 3-dim
        else:
            x = x.view(rh, rw)  # 2-dim

    return x


def cast_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _D]:
    if x.dtype != torch.float32 or x.dtype != torch.float64:
        dtype = x.dtype
        x = x.float()
    else:
        dtype = None

    return x, dtype


def cast_output(x: torch.Tensor, dtype: _D) -> torch.Tensor:
    if dtype is not None:
        if not dtype.is_floating_point:
            x = x - x.detach() + x.round()
        # To prevent over/underflow when converting types
        if dtype is torch.uint8:
            x = x.clamp(0, 255)

        x = x.to(dtype=dtype)

    return x


def resize_1d(x: torch.Tensor,
              dim: int,
              size: int,
              scale: float,
              kernel: str = 'cubic',
              sigma: float = 2.0,
              padding_type: str = 'reflect',
              antialiasing: bool = True) -> torch.Tensor:
    '''
    Args:
        x (torch.Tensor): A torch.Tensor of dimension (B x C, 1, H, W).
        dim (int):
        scale (float):
        size (int):
    Return:
    '''
    # Identity case
    if scale == 1:
        return x

    # Default bicubic kernel with antialiasing (only when downsampling)
    if kernel == 'cubic':
        kernel_size = 4
    else:
        kernel_size = math.floor(6 * sigma)

    if antialiasing and (scale < 1):
        antialiasing_factor = scale
        kernel_size = math.ceil(kernel_size / antialiasing_factor)
    else:
        antialiasing_factor = 1

    # We allow margin to both sizes
    kernel_size += 2

    # Weights only depend on the shape of input and output,
    # so we do not calculate gradients here.
    with torch.no_grad():
        pos = torch.linspace(
            0,
            size - 1,
            steps=size,
            dtype=x.dtype,
            device=x.device,
        )
        pos = (pos + 0.5) / scale - 0.5
        base = pos.floor() - (kernel_size // 2) + 1
        dist = pos - base
        weight = get_weight(
            dist,
            kernel_size,
            kernel=kernel,
            sigma=sigma,
            antialiasing_factor=antialiasing_factor,
        )
        pad_pre, pad_post, base = get_padding(base, kernel_size, x.size(dim))

    # To backpropagate through x
    x_pad = padding(x, dim, pad_pre, pad_post, padding_type=padding_type)
    unfold = reshape_tensor(x_pad, dim, kernel_size)
    # Subsampling first
    if dim == 2 or dim == -2:
        sample = unfold[..., base, :]
        weight = weight.view(1, kernel_size, sample.size(2), 1)
    else:
        sample = unfold[..., base]
        weight = weight.view(1, kernel_size, 1, sample.size(3))

    # Apply the kernel
    x = sample * weight
    x = x.sum(dim=1, keepdim=True)
    return x


def downsampling_2d(x: torch.Tensor, k: torch.Tensor, scale: int, padding_type: str = 'reflect') -> torch.Tensor:
    c = x.size(1)
    k_h = k.size(-2)
    k_w = k.size(-1)

    k = k.to(dtype=x.dtype, device=x.device)
    k = k.view(1, 1, k_h, k_w)
    k = k.repeat(c, c, 1, 1)
    e = torch.eye(c, dtype=k.dtype, device=k.device, requires_grad=False)
    e = e.view(c, c, 1, 1)
    k = k * e

    pad_h = (k_h - scale) // 2
    pad_w = (k_w - scale) // 2
    x = padding(x, -2, pad_h, pad_h, padding_type=padding_type)
    x = padding(x, -1, pad_w, pad_w, padding_type=padding_type)
    y = F.conv2d(x, k, padding=0, stride=scale)
    return y


def imresize(x: torch.Tensor,
             scale: typing.Optional[float] = None,
             sizes: typing.Optional[typing.Tuple[int, int]] = None,
             kernel: typing.Union[str, torch.Tensor] = 'cubic',
             sigma: float = 2,
             rotation_degree: float = 0,
             padding_type: str = 'reflect',
             antialiasing: bool = True) -> torch.Tensor:
    """
    Args:
        x (torch.Tensor):
        scale (float):
        sizes (tuple(int, int)):
        kernel (str, default='cubic'):
        sigma (float, default=2):
        rotation_degree (float, default=0):
        padding_type (str, default='reflect'):
        antialiasing (bool, default=True):
    Return:
        torch.Tensor:
    """
    if scale is None and sizes is None:
        raise ValueError('One of scale or sizes must be specified!')
    if scale is not None and sizes is not None:
        raise ValueError('Please specify scale or sizes to avoid conflict!')

    x, b, c, h, w = reshape_input(x)

    if sizes is None and scale is not None:
        '''
        # Check if we can apply the convolution algorithm
        scale_inv = 1 / scale
        if isinstance(kernel, str) and scale_inv.is_integer():
            kernel = discrete_kernel(kernel, scale, antialiasing=antialiasing)
        elif isinstance(kernel, torch.Tensor) and not scale_inv.is_integer():
            raise ValueError(
                'An integer downsampling factor '
                'should be used with a predefined kernel!'
            )
        '''
        # Determine output size
        sizes = (math.ceil(h * scale), math.ceil(w * scale))
        scales = (scale, scale)

    if scale is None and sizes is not None:
        scales = (sizes[0] / h, sizes[1] / w)

    x, dtype = cast_input(x)

    if isinstance(kernel, str) and sizes is not None:
        # Core resizing module
        x = resize_1d(
            x,
            -2,
            size=sizes[0],
            scale=scales[0],
            kernel=kernel,
            sigma=sigma,
            padding_type=padding_type,
            antialiasing=antialiasing)
        x = resize_1d(
            x,
            -1,
            size=sizes[1],
            scale=scales[1],
            kernel=kernel,
            sigma=sigma,
            padding_type=padding_type,
            antialiasing=antialiasing)
    elif isinstance(kernel, torch.Tensor) and scale is not None:
        x = downsampling_2d(x, kernel, scale=int(1 / scale))

    x = reshape_output(x, b, c)
    x = cast_output(x, dtype)
    return x