File size: 3,120 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2021-11-24 20:29:36

import math
import torch
from pathlib import Path
from copy import deepcopy
from collections import OrderedDict
import torch.nn.functional as F

def calculate_parameters(net):
    out = 0
    for param in net.parameters():
        out += param.numel()
    return out

def pad_input(x, mod):
    h, w = x.shape[-2:]
    bottom = int(math.ceil(h/mod)*mod -h)
    right = int(math.ceil(w/mod)*mod - w)
    x_pad = F.pad(x, pad=(0, right, 0, bottom), mode='reflect')
    return x_pad

def forward_chop(net, x, net_kwargs=None, scale=1, shave=10, min_size=160000):
    n_GPUs = 1
    b, c, h, w = x.size()
    h_half, w_half = h // 2, w // 2
    h_size, w_size = h_half + shave, w_half + shave
    lr_list = [
        x[:, :, 0:h_size, 0:w_size],
        x[:, :, 0:h_size, (w - w_size):w],
        x[:, :, (h - h_size):h, 0:w_size],
        x[:, :, (h - h_size):h, (w - w_size):w]]

    if w_size * h_size < min_size:
        sr_list = []
        for i in range(0, 4, n_GPUs):
            lr_batch = torch.cat(lr_list[i:(i + n_GPUs)], dim=0)
            if net_kwargs is None:
                sr_batch = net(lr_batch)
            else:
                sr_batch = net(lr_batch, **net_kwargs)
            sr_list.extend(sr_batch.chunk(n_GPUs, dim=0))
    else:
        sr_list = [
            forward_chop(patch, shave=shave, min_size=min_size) \
            for patch in lr_list
        ]

    h, w = scale * h, scale * w
    h_half, w_half = scale * h_half, scale * w_half
    h_size, w_size = scale * h_size, scale * w_size
    shave *= scale

    output = x.new(b, c, h, w)
    output[:, :, 0:h_half, 0:w_half] \
        = sr_list[0][:, :, 0:h_half, 0:w_half]
    output[:, :, 0:h_half, w_half:w] \
        = sr_list[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
    output[:, :, h_half:h, 0:w_half] \
        = sr_list[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
    output[:, :, h_half:h, w_half:w] \
        = sr_list[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]

    return output

def measure_time(net, inputs, num_forward=100):
    '''
    Measuring the average runing time (seconds) for pytorch.
    out = net(*inputs)
    '''
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

    start.record()
    with torch.set_grad_enabled(False):
        for _ in range(num_forward):
            out = net(*inputs)
    end.record()

    torch.cuda.synchronize()

    return start.elapsed_time(end) / 1000

def reload_model(model, ckpt):
    module_flag = list(ckpt.keys())[0].startswith('module.')
    compile_flag = '_orig_mod' in list(ckpt.keys())[0]

    for source_key, source_value in model.state_dict().items():
        target_key = source_key
        if compile_flag and (not '_orig_mod.' in source_key):
            target_key = '_orig_mod.' + target_key
        if module_flag and (not source_key.startswith('module')):
            target_key = 'module.' + target_key

        assert target_key in ckpt
        source_value.copy_(ckpt[target_key])