Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,096 Bytes
bfa59ab d1a45a9 bfa59ab cbbaa86 bfa59ab cbbaa86 bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2024-12-11 17:17:41
import spaces
import warnings
warnings.filterwarnings("ignore")
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from omegaconf import OmegaConf
from sampler_invsr import InvSamplerSR
from utils import util_common
from utils import util_image
from basicsr.utils.download_util import load_file_from_url
def get_configs(num_steps=1, chopping_size=128, seed=12345):
configs = OmegaConf.load("./configs/sample-sd-turbo.yaml")
if num_steps == 1:
configs.timesteps = [200,]
elif num_steps == 2:
configs.timesteps = [200, 100]
elif num_steps == 3:
configs.timesteps = [200, 100, 50]
elif num_steps == 4:
configs.timesteps = [200, 150, 100, 50]
elif num_steps == 5:
configs.timesteps = [250, 200, 150, 100, 50]
else:
assert num_steps <= 250
configs.timesteps = np.linspace(
start=250, stop=0, num=num_steps, endpoint=False, dtype=np.int64()
).tolist()
print(f'Setting timesteps for inference: {configs.timesteps}')
# path to save noise predictor
started_ckpt_name = "noise_predictor_sd_turbo_v5.pth"
started_ckpt_dir = "./weights"
util_common.mkdir(started_ckpt_dir, delete=False, parents=True)
started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name
if not started_ckpt_path.exists():
load_file_from_url(
url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth",
model_dir=started_ckpt_dir,
progress=True,
file_name=started_ckpt_name,
)
configs.model_start.ckpt_path = str(started_ckpt_path)
configs.bs = 1
configs.seed = 12345
configs.basesr.chopping.pch_size = chopping_size
if chopping_size == 128:
configs.basesr.chopping.extra_bs = 8
elif chopping_size == 256:
configs.basesr.chopping.extra_bs = 4
else:
configs.basesr.chopping.extra_bs = 1
return configs
@spaces.GPU
def predict(in_path, num_steps=1, chopping_size=128, seed=12345):
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=12345)
sampler = InvSamplerSR(configs)
out_dir = Path('invsr_output')
if not out_dir.exists():
out_dir.mkdir()
sampler.inference(in_path, out_path=out_dir, bs=1)
out_path = out_dir / f"{Path(in_path).stem}.png"
assert out_path.exists(), 'Super-resolution failed!'
im_sr = util_image.imread(out_path, chn="rgb", dtype="uint8")
return im_sr, str(out_path)
title = "Arbitrary-steps Image Super-resolution via Diffusion Inversion"
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/InvSR' target='_blank'><b>Arbitrary-steps Image Super-resolution via Diffuion Inversion</b></a>.<br>
π₯ InvSR is an image super-resolution method via Diffusion Inversion, supporting arbitrary sampling steps.<br>
"""
article = r"""
If you've found InvSR useful for your research or projects, please show your support by β the <a href='https://github.com/zsyOAOA/InvSR' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/InvSR?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/InvSR)
---
If our work is useful for your research, please consider citing:
```bibtex
@article{yue2024InvSR,
title={Arbitrary-steps Image Super-resolution via Diffusion Inversion},
author={Yue, Zongsheng and Kang, Liao and Loy, Chen Change},
journal = {arXiv preprint arXiv:2412.09013},
year={2024},
}
```
π **License**
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/InvSR/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
π§ **Contact**
If you have any questions, please feel free to contact me via <b>zsyzam@gmail.com</b>.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/InvSR)
"""
demo = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="filepath", label="Input: Low Quality Image"),
gr.Dropdown(
choices=[1,2,3,4,5],
value=1,
label="Number of steps",
),
gr.Dropdown(
choices=[128, 256, 512],
value=128,
label="Chopping size",
),
gr.Number(value=12345, precision=0, label="Ranom seed")
],
outputs=[
gr.Image(type="numpy", label="Output: High Quality Image"),
gr.File(label="Download the output")
],
title=title,
description=description,
article=article,
examples=[
['./testdata/RealSet80/29.jpg', 3, 128, 12345],
['./testdata/RealSet80/32.jpg', 1, 128, 12345],
['./testdata/RealSet80/0030.jpg', 1, 128, 12345],
['./testdata/RealSet80/2684538-PH.jpg', 1, 128, 12345],
['./testdata/RealSet80/oldphoto6.png', 1, 128, 12345],
]
)
demo.queue(max_size=5)
demo.launch(share=True)
|