Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,102 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...models import UVit2DModel, VQModel
from ...schedulers import AmusedScheduler
from ...utils import replace_example_docstring
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import AmusedImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> pipe = AmusedImg2ImgPipeline.from_pretrained(
... "amused/amused-512", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "winter mountains"
>>> input_image = (
... load_image(
... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg"
... )
... .resize((512, 512))
... .convert("RGB")
... )
>>> image = pipe(prompt, input_image).images[0]
```
"""
class AmusedImg2ImgPipeline(DiffusionPipeline):
image_processor: VaeImageProcessor
vqvae: VQModel
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModelWithProjection
transformer: UVit2DModel
scheduler: AmusedScheduler
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
# TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
# the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
# off the meta device. There should be a way to fix this instead of just not offloading it
_exclude_from_cpu_offload = ["vqvae"]
def __init__(
self,
vqvae: VQModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
transformer: UVit2DModel,
scheduler: AmusedScheduler,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[List[str], str]] = None,
image: PipelineImageInput = None,
strength: float = 0.5,
num_inference_steps: int = 12,
guidance_scale: float = 10.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[torch.Generator] = None,
prompt_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
output_type="pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
micro_conditioning_aesthetic_score: int = 6,
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
):
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
strength (`float`, *optional*, defaults to 0.5):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 12):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
pooled and projected final hidden states.
encoder_hidden_states (`torch.Tensor`, *optional*):
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_encoder_hidden_states (`torch.Tensor`, *optional*):
Analogous to `encoder_hidden_states` for the positive prompt.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
The targeted aesthetic score according to the laion aesthetic classifier. See
https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
https://arxiv.org/abs/2307.01952.
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
The targeted height, width crop coordinates. See the micro-conditioning section of
https://arxiv.org/abs/2307.01952.
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
Examples:
Returns:
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
`tuple` is returned where the first element is a list with the generated images.
"""
if (prompt_embeds is not None and encoder_hidden_states is None) or (
prompt_embeds is None and encoder_hidden_states is not None
):
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
):
raise ValueError(
"pass either both `negative_prompt_embeds` and `negative_encoder_hidden_states` or neither"
)
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
if isinstance(prompt, str):
prompt = [prompt]
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
if prompt_embeds is None:
input_ids = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
if guidance_scale > 1.0:
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * len(prompt)
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
negative_encoder_hidden_states = outputs.hidden_states[-2]
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
image = self.image_processor.preprocess(image)
height, width = image.shape[-2:]
# Note that the micro conditionings _do_ flip the order of width, height for the original size
# and the crop coordinates. This is how it was done in the original code base
micro_conds = torch.tensor(
[
width,
height,
micro_conditioning_crop_coord[0],
micro_conditioning_crop_coord[1],
micro_conditioning_aesthetic_score,
],
device=self._execution_device,
dtype=encoder_hidden_states.dtype,
)
micro_conds = micro_conds.unsqueeze(0)
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
num_inference_steps = int(len(self.scheduler.timesteps) * strength)
start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
if needs_upcasting:
self.vqvae.float()
latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
latents_bsz, channels, latents_height, latents_width = latents.shape
latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
latents = self.scheduler.add_noise(
latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator
)
latents = latents.repeat(num_images_per_prompt, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
timestep = self.scheduler.timesteps[i]
if guidance_scale > 1.0:
model_input = torch.cat([latents] * 2)
else:
model_input = latents
model_output = self.transformer(
model_input,
micro_conds=micro_conds,
pooled_text_emb=prompt_embeds,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
if guidance_scale > 1.0:
uncond_logits, cond_logits = model_output.chunk(2)
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
latents = self.scheduler.step(
model_output=model_output,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, timestep, latents)
if output_type == "latent":
output = latents
else:
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.image_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
self.maybe_free_model_hooks()
if not return_dict:
return (output,)
return ImagePipelineOutput(output)
|