File size: 4,332 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import importlib
import numpy as np
import random
import torch
import torch.utils.data
from copy import deepcopy
from functools import partial
from os import path as osp

from basicsr.data.prefetch_dataloader import PrefetchDataLoader
from basicsr.utils import get_root_logger, scandir
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import DATASET_REGISTRY

__all__ = ['build_dataset', 'build_dataloader']

# automatically scan and import dataset modules for registry
# scan all the files under the data folder with '_dataset' in file names
data_folder = osp.dirname(osp.abspath(__file__))
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
# import all the dataset modules
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]


def build_dataset(dataset_opt):
    """Build dataset from options.

    Args:
        dataset_opt (dict): Configuration for dataset. It must contain:
            name (str): Dataset name.
            type (str): Dataset type.
    """
    dataset_opt = deepcopy(dataset_opt)
    dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
    logger = get_root_logger()
    logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.')
    return dataset


def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
    """Build dataloader.

    Args:
        dataset (torch.utils.data.Dataset): Dataset.
        dataset_opt (dict): Dataset options. It contains the following keys:
            phase (str): 'train' or 'val'.
            num_worker_per_gpu (int): Number of workers for each GPU.
            batch_size_per_gpu (int): Training batch size for each GPU.
        num_gpu (int): Number of GPUs. Used only in the train phase.
            Default: 1.
        dist (bool): Whether in distributed training. Used only in the train
            phase. Default: False.
        sampler (torch.utils.data.sampler): Data sampler. Default: None.
        seed (int | None): Seed. Default: None
    """
    phase = dataset_opt['phase']
    rank, _ = get_dist_info()
    if phase == 'train':
        if dist:  # distributed training
            batch_size = dataset_opt['batch_size_per_gpu']
            num_workers = dataset_opt['num_worker_per_gpu']
        else:  # non-distributed training
            multiplier = 1 if num_gpu == 0 else num_gpu
            batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
            num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
        dataloader_args = dict(
            dataset=dataset,
            batch_size=batch_size,
            shuffle=False,
            num_workers=num_workers,
            sampler=sampler,
            drop_last=True)
        if sampler is None:
            dataloader_args['shuffle'] = True
        dataloader_args['worker_init_fn'] = partial(
            worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
    elif phase in ['val', 'test']:  # validation
        dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
    else:
        raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.")

    dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
    dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False)

    prefetch_mode = dataset_opt.get('prefetch_mode')
    if prefetch_mode == 'cpu':  # CPUPrefetcher
        num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
        logger = get_root_logger()
        logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
        return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
    else:
        # prefetch_mode=None: Normal dataloader
        # prefetch_mode='cuda': dataloader for CUDAPrefetcher
        return torch.utils.data.DataLoader(**dataloader_args)


def worker_init_fn(worker_id, num_workers, rank, seed):
    # Set the worker seed to num_workers * rank + worker_id + seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)