Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,824 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import cv2
import numpy as np
import torch
from os import path as osp
from torch.nn import functional as F
from basicsr.data.transforms import mod_crop
from basicsr.utils import img2tensor, scandir
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
"""Read a sequence of images from a given folder path.
Args:
path (list[str] | str): List of image paths or image folder path.
require_mod_crop (bool): Require mod crop for each image.
Default: False.
scale (int): Scale factor for mod_crop. Default: 1.
return_imgname(bool): Whether return image names. Default False.
Returns:
Tensor: size (t, c, h, w), RGB, [0, 1].
list[str]: Returned image name list.
"""
if isinstance(path, list):
img_paths = path
else:
img_paths = sorted(list(scandir(path, full_path=True)))
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
if require_mod_crop:
imgs = [mod_crop(img, scale) for img in imgs]
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
imgs = torch.stack(imgs, dim=0)
if return_imgname:
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
return imgs, imgnames
else:
return imgs
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
"""Generate an index list for reading `num_frames` frames from a sequence
of images.
Args:
crt_idx (int): Current center index.
max_frame_num (int): Max number of the sequence of images (from 1).
num_frames (int): Reading num_frames frames.
padding (str): Padding mode, one of
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
Examples: current_idx = 0, num_frames = 5
The generated frame indices under different padding mode:
replicate: [0, 0, 0, 1, 2]
reflection: [2, 1, 0, 1, 2]
reflection_circle: [4, 3, 0, 1, 2]
circle: [3, 4, 0, 1, 2]
Returns:
list[int]: A list of indices.
"""
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
max_frame_num = max_frame_num - 1 # start from 0
num_pad = num_frames // 2
indices = []
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
if i < 0:
if padding == 'replicate':
pad_idx = 0
elif padding == 'reflection':
pad_idx = -i
elif padding == 'reflection_circle':
pad_idx = crt_idx + num_pad - i
else:
pad_idx = num_frames + i
elif i > max_frame_num:
if padding == 'replicate':
pad_idx = max_frame_num
elif padding == 'reflection':
pad_idx = max_frame_num * 2 - i
elif padding == 'reflection_circle':
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
else:
pad_idx = i - num_frames
else:
pad_idx = i
indices.append(pad_idx)
return indices
def paired_paths_from_lmdb(folders, keys):
"""Generate paired paths from lmdb files.
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
::
lq.lmdb
βββ data.mdb
βββ lock.mdb
βββ meta_info.txt
The data.mdb and lock.mdb are standard lmdb files and you can refer to
https://lmdb.readthedocs.io/en/release/ for more details.
The meta_info.txt is a specified txt file to record the meta information
of our datasets. It will be automatically created when preparing
datasets by our provided dataset tools.
Each line in the txt file records
1)image name (with extension),
2)image shape,
3)compression level, separated by a white space.
Example: `baboon.png (120,125,3) 1`
We use the image name without extension as the lmdb key.
Note that we use the same key for the corresponding lq and gt images.
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
Note that this key is different from lmdb keys.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
input_folder, gt_folder = folders
input_key, gt_key = keys
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
f'formats. But received {input_key}: {input_folder}; '
f'{gt_key}: {gt_folder}')
# ensure that the two meta_info files are the same
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
input_lmdb_keys = [line.split('.')[0] for line in fin]
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
gt_lmdb_keys = [line.split('.')[0] for line in fin]
if set(input_lmdb_keys) != set(gt_lmdb_keys):
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
else:
paths = []
for lmdb_key in sorted(input_lmdb_keys):
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
return paths
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
"""Generate paired paths from an meta information file.
Each line in the meta information file contains the image names and
image shape (usually for gt), separated by a white space.
Example of an meta information file:
```
0001_s001.png (480,480,3)
0001_s002.png (480,480,3)
```
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
meta_info_file (str): Path to the meta information file.
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Usually the filename_tmpl is
for files in the input folder.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
input_folder, gt_folder = folders
input_key, gt_key = keys
with open(meta_info_file, 'r') as fin:
gt_names = [line.strip().split(' ')[0] for line in fin]
paths = []
for gt_name in gt_names:
basename, ext = osp.splitext(osp.basename(gt_name))
input_name = f'{filename_tmpl.format(basename)}{ext}'
input_path = osp.join(input_folder, input_name)
gt_path = osp.join(gt_folder, gt_name)
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
return paths
def paired_paths_from_folder(folders, keys, filename_tmpl):
"""Generate paired paths from folders.
Args:
folders (list[str]): A list of folder path. The order of list should
be [input_folder, gt_folder].
keys (list[str]): A list of keys identifying folders. The order should
be in consistent with folders, e.g., ['lq', 'gt'].
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Usually the filename_tmpl is
for files in the input folder.
Returns:
list[str]: Returned path list.
"""
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
f'But got {len(folders)}')
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
input_folder, gt_folder = folders
input_key, gt_key = keys
input_paths = list(scandir(input_folder))
gt_paths = list(scandir(gt_folder))
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
f'{len(input_paths)}, {len(gt_paths)}.')
paths = []
for gt_path in gt_paths:
basename, ext = osp.splitext(osp.basename(gt_path))
input_name = f'{filename_tmpl.format(basename)}{ext}'
input_path = osp.join(input_folder, input_name)
assert input_name in input_paths, f'{input_name} is not in {input_key}_paths.'
gt_path = osp.join(gt_folder, gt_path)
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
return paths
def paths_from_folder(folder):
"""Generate paths from folder.
Args:
folder (str): Folder path.
Returns:
list[str]: Returned path list.
"""
paths = list(scandir(folder))
paths = [osp.join(folder, path) for path in paths]
return paths
def paths_from_lmdb(folder):
"""Generate paths from lmdb.
Args:
folder (str): Folder path.
Returns:
list[str]: Returned path list.
"""
if not folder.endswith('.lmdb'):
raise ValueError(f'Folder {folder}folder should in lmdb format.')
with open(osp.join(folder, 'meta_info.txt')) as fin:
paths = [line.split('.')[0] for line in fin]
return paths
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
"""Generate Gaussian kernel used in `duf_downsample`.
Args:
kernel_size (int): Kernel size. Default: 13.
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
Returns:
np.array: The Gaussian kernel.
"""
from scipy.ndimage import filters as filters
kernel = np.zeros((kernel_size, kernel_size))
# set element at the middle to one, a dirac delta
kernel[kernel_size // 2, kernel_size // 2] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter
return filters.gaussian_filter(kernel, sigma)
def duf_downsample(x, kernel_size=13, scale=4):
"""Downsamping with Gaussian kernel used in the DUF official code.
Args:
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
kernel_size (int): Kernel size. Default: 13.
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
Default: 4.
Returns:
Tensor: DUF downsampled frames.
"""
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
squeeze_flag = False
if x.ndim == 4:
squeeze_flag = True
x = x.unsqueeze(0)
b, t, c, h, w = x.size()
x = x.view(-1, 1, h, w)
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
x = F.conv2d(x, gaussian_filter, stride=scale)
x = x[:, :, 2:-2, 2:-2]
x = x.view(b, t, c, x.size(2), x.size(3))
if squeeze_flag:
x = x.squeeze(0)
return x
|