File size: 11,902 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27

import os, sys, math, random

import cv2
import numpy as np
from pathlib import Path
from loguru import logger
from omegaconf import OmegaConf

from trainer import get_torch_dtype

from utils import util_net
from utils import util_image
from utils import util_common
from utils import util_color_fix

import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp

from datapipe.datasets import create_dataset
from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL

_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\
           'meticulous detailing, hyper sharpness, perfect without deformations'
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\
           'painting, drawing, sketch, oil painting'

class BaseSampler:
    def __init__(self, configs):
        '''
        Input:
            configs: config, see the yaml file in folder ./configs/
                configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps}
            seed: int, random seed
        '''
        self.configs = configs

        self.setup_seed()

        self.build_model()

    def setup_seed(self, seed=None):
        seed = self.configs.seed if seed is None else seed
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

    def write_log(self, log_str):
        print(log_str, flush=True)

    def build_model(self):
        # Build Stable diffusion
        params = dict(self.configs.sd_pipe.params)
        torch_dtype = params.pop('torch_dtype')
        params['torch_dtype'] = get_torch_dtype(torch_dtype)
        base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params)
        if self.configs.get('scheduler', None) is not None:
            pipe_id = self.configs.scheduler.target.split('.')[-1]
            self.write_log(f'Loading scheduler of {pipe_id}...')
            base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config(
                base_pipe.scheduler.config
            )
            self.write_log('Loaded Done')
        if self.configs.get('vae_fp16', None) is not None:
            params_vae = dict(self.configs.vae_fp16.params)
            torch_dtype = params_vae.pop('torch_dtype')
            params_vae['torch_dtype'] = get_torch_dtype(torch_dtype)
            pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path
            self.write_log(f'Loading improved vae from {pipe_id}...')
            base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained(
                **params_vae,
            )
            self.write_log('Loaded Done')
        if self.configs.base_model in ['sd-turbo', 'sd2base'] :
            sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe)
        else:
            raise ValueError(f"Unsupported base model: {self.configs.base_model}!")
        sd_pipe.to(f"cuda")
        if self.configs.sliced_vae:
            sd_pipe.vae.enable_slicing()
        if self.configs.tiled_vae:
            sd_pipe.vae.enable_tiling()
            sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size
            sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size
        if self.configs.gradient_checkpointing_vae:
            self.write_log(f"Activating gradient checkpoing for vae...")
            sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True)
            sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True)

        model_configs = self.configs.model_start
        params = model_configs.get('params', dict)
        model_start = util_common.get_obj_from_str(model_configs.target)(**params)
        model_start.cuda()
        ckpt_path = model_configs.get('ckpt_path')
        assert ckpt_path is not None
        self.write_log(f"Loading started model from {ckpt_path}...")
        state = torch.load(ckpt_path, map_location=f"cuda")
        if 'state_dict' in state:
            state = state['state_dict']
        util_net.reload_model(model_start, state)
        self.write_log(f"Loading Done")
        model_start.eval()
        setattr(sd_pipe, 'start_noise_predictor', model_start)

        self.sd_pipe = sd_pipe

class InvSamplerSR(BaseSampler):
    @torch.no_grad()
    def sample_func(self, im_cond):
        '''
        Input:
            im_cond: b x c x h x w, torch tensor, [0,1], RGB
        Output:
            xt: h x w x c, numpy array, [0,1], RGB
        '''
        if self.configs.cfg_scale > 1.0:
            negative_prompt = [_negative,]*im_cond.shape[0]
        else:
            negative_prompt = None

        ori_h_lq, ori_w_lq = im_cond.shape[-2:]
        ori_w_hq = ori_w_lq * self.configs.basesr.sf
        ori_h_hq = ori_h_lq * self.configs.basesr.sf
        vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1))
        if hasattr(self.sd_pipe, 'unet'):
            diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1))
        else:
            diffusion_sf = self.sd_pipe.transformer.patch_size
        mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf
        idle_pch_size = self.configs.basesr.chopping.pch_size

        if min(im_cond.shape[-2:]) >= idle_pch_size:
            pad_h_up = pad_w_left = 0
        else:
            while min(im_cond.shape[-2:]) < idle_pch_size:
                pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0)
                pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0)
                pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0)
                pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0)
                im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect')

        if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size:
            target_size = (
                im_cond.shape[-2] * self.configs.basesr.sf,
                im_cond.shape[-1] * self.configs.basesr.sf
            )
            res_sr = self.sd_pipe(
                image=im_cond.type(torch.float16),
                prompt=[_positive, ]*im_cond.shape[0],
                negative_prompt=negative_prompt,
                target_size=target_size,
                timesteps=self.configs.timesteps,
                guidance_scale=self.configs.cfg_scale,
                output_type="pt",    # torch tensor, b x c x h x w, [0, 1]
            ).images
        else:
            if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0):
                target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq
                target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq
                pad_h = target_h_lq - im_cond.shape[-2]
                pad_w = target_w_lq - im_cond.shape[-1]
                im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect')

            im_spliter = util_image.ImageSpliterTh(
                im_cond,
                pch_size=idle_pch_size,
                stride= int(idle_pch_size * 0.50),
                sf=self.configs.basesr.sf,
                weight_type=self.configs.basesr.chopping.weight_type,
                extra_bs=1 if self.configs.bs > 1 else self.configs.bs,
            )
            for im_lq_pch, index_infos in im_spliter:
                target_size = (
                    im_lq_pch.shape[-2] * self.configs.basesr.sf,
                    im_lq_pch.shape[-1] * self.configs.basesr.sf,
                )

                # start = torch.cuda.Event(enable_timing=True)
                # end = torch.cuda.Event(enable_timing=True)
                # start.record()

                res_sr_pch = self.sd_pipe(
                    image=im_lq_pch.type(torch.float16),
                    prompt=[_positive, ]*im_lq_pch.shape[0],
                    negative_prompt=negative_prompt,
                    target_size=target_size,
                    timesteps=self.configs.timesteps,
                    guidance_scale=self.configs.cfg_scale,
                    output_type="pt",    # torch tensor, b x c x h x w, [0, 1]
                ).images

                # end.record()
                # torch.cuda.synchronize()
                # print(f"Time: {start.elapsed_time(end):.6f}")

                im_spliter.update(res_sr_pch, index_infos)
            res_sr = im_spliter.gather()

        pad_h_up *= self.configs.basesr.sf
        pad_w_left *= self.configs.basesr.sf
        res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left]

        if self.configs.color_fix:
            im_cond_up = F.interpolate(
                im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True
            )
            if self.configs.color_fix == 'ycbcr':
                res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up)
            elif self.configs.color_fix == 'wavelet':
                res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up)
            else:
                raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}")

        res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy()

        return res_sr

    def inference(self, in_path, out_path, bs=1):
        '''
        Inference demo.
        Input:
            in_path: str, folder or image path for LQ image
            out_path: str, folder save the results
            bs: int, default bs=1, bs % num_gpus == 0
        '''

        in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
        out_path = Path(out_path) if not isinstance(out_path, Path) else out_path

        if not out_path.exists():
            out_path.mkdir(parents=True)

        if in_path.is_dir():
            data_config = {'type': 'base',
                           'params': {'dir_path': str(in_path),
                                      'transform_type': 'default',
                                      'transform_kwargs': {
                                          'mean': 0.0,
                                          'std': 1.0,
                                          },
                                      'need_path': True,
                                      'recursive': False,
                                      'length': None,
                                      }
                           }
            dataset = create_dataset(data_config)
            self.write_log(f'Find {len(dataset)} images in {in_path}')
            dataloader = torch.utils.data.DataLoader(
                dataset, batch_size=bs, shuffle=False, drop_last=False,
            )
            for data in dataloader:
                res = self.sample_func(data['lq'].cuda())

                for jj in range(res.shape[0]):
                    im_name = Path(data['path'][jj]).stem
                    save_path = str(out_path / f"{im_name}.png")
                    util_image.imwrite(res[jj], save_path, dtype_in='float32')
        else:
            im_cond = util_image.imread(in_path, chn='rgb', dtype='float32')  # h x w x c
            im_cond = util_image.img2tensor(im_cond).cuda()                   # 1 x c x h x w

            image = self.sample_func(im_cond).squeeze(0)

            save_path = str(out_path / f"{in_path.stem}.png")
            util_image.imwrite(image, save_path, dtype_in='float32')

        self.write_log(f"Processing done, enjoy the results in {str(out_path)}")

if __name__ == '__main__':
    pass