Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,712 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright 2024 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.torch_utils import randn_tensor
from ..scheduling_utils import SchedulerMixin
@dataclass
class KarrasVeOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
derivative (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Derivative of predicted original image sample (x_0).
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
derivative: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
"""
A stochastic scheduler tailored to variance-expanding models.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
<Tip>
For more details on the parameters, see [Appendix E](https://arxiv.org/abs/2206.00364). The grid search values used
to find the optimal `{s_noise, s_churn, s_min, s_max}` for a specific model are described in Table 5 of the paper.
</Tip>
Args:
sigma_min (`float`, defaults to 0.02):
The minimum noise magnitude.
sigma_max (`float`, defaults to 100):
The maximum noise magnitude.
s_noise (`float`, defaults to 1.007):
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
1.011].
s_churn (`float`, defaults to 80):
The parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100].
s_min (`float`, defaults to 0.05):
The start value of the sigma range to add noise (enable stochasticity). A reasonable range is [0, 10].
s_max (`float`, defaults to 50):
The end value of the sigma range to add noise. A reasonable range is [0.2, 80].
"""
order = 2
@register_to_config
def __init__(
self,
sigma_min: float = 0.02,
sigma_max: float = 100,
s_noise: float = 1.007,
s_churn: float = 80,
s_min: float = 0.05,
s_max: float = 50,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = sigma_max
# setable values
self.num_inference_steps: int = None
self.timesteps: np.IntTensor = None
self.schedule: torch.Tensor = None # sigma(t_i)
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps).to(device)
schedule = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
def add_noise_to_input(
self, sample: torch.Tensor, sigma: float, generator: Optional[torch.Generator] = None
) -> Tuple[torch.Tensor, float]:
"""
Explicit Langevin-like "churn" step of adding noise to the sample according to a `gamma_i ≥ 0` to reach a
higher noise level `sigma_hat = sigma_i + gamma_i*sigma_i`.
Args:
sample (`torch.Tensor`):
The input sample.
sigma (`float`):
generator (`torch.Generator`, *optional*):
A random number generator.
"""
if self.config.s_min <= sigma <= self.config.s_max:
gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
else:
gamma = 0
# sample eps ~ N(0, S_noise^2 * I)
eps = self.config.s_noise * randn_tensor(sample.shape, generator=generator).to(sample.device)
sigma_hat = sigma + gamma * sigma
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def step(
self,
model_output: torch.Tensor,
sigma_hat: float,
sigma_prev: float,
sample_hat: torch.Tensor,
return_dict: bool = True,
) -> Union[KarrasVeOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
sigma_hat (`float`):
sigma_prev (`float`):
sample_hat (`torch.Tensor`):
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
pred_original_sample = sample_hat + sigma_hat * model_output
derivative = (sample_hat - pred_original_sample) / sigma_hat
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
)
def step_correct(
self,
model_output: torch.Tensor,
sigma_hat: float,
sigma_prev: float,
sample_hat: torch.Tensor,
sample_prev: torch.Tensor,
derivative: torch.Tensor,
return_dict: bool = True,
) -> Union[KarrasVeOutput, Tuple]:
"""
Corrects the predicted sample based on the `model_output` of the network.
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
sigma_hat (`float`): TODO
sigma_prev (`float`): TODO
sample_hat (`torch.Tensor`): TODO
sample_prev (`torch.Tensor`): TODO
derivative (`torch.Tensor`): TODO
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
Returns:
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
"""
pred_original_sample = sample_prev + sigma_prev * model_output
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
)
def add_noise(self, original_samples, noise, timesteps):
raise NotImplementedError()
|