File size: 7,148 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import cv2
import lmdb
import sys
from multiprocessing import Pool
from os import path as osp
from tqdm import tqdm


def make_lmdb_from_imgs(data_path,
                        lmdb_path,
                        img_path_list,
                        keys,
                        batch=5000,
                        compress_level=1,
                        multiprocessing_read=False,
                        n_thread=40,
                        map_size=None):
    """Make lmdb from images.

    Contents of lmdb. The file structure is:

    ::

        example.lmdb
        β”œβ”€β”€ data.mdb
        β”œβ”€β”€ lock.mdb
        β”œβ”€β”€ meta_info.txt

    The data.mdb and lock.mdb are standard lmdb files and you can refer to
    https://lmdb.readthedocs.io/en/release/ for more details.

    The meta_info.txt is a specified txt file to record the meta information
    of our datasets. It will be automatically created when preparing
    datasets by our provided dataset tools.
    Each line in the txt file records 1)image name (with extension),
    2)image shape, and 3)compression level, separated by a white space.

    For example, the meta information could be:
    `000_00000000.png (720,1280,3) 1`, which means:
    1) image name (with extension): 000_00000000.png;
    2) image shape: (720,1280,3);
    3) compression level: 1

    We use the image name without extension as the lmdb key.

    If `multiprocessing_read` is True, it will read all the images to memory
    using multiprocessing. Thus, your server needs to have enough memory.

    Args:
        data_path (str): Data path for reading images.
        lmdb_path (str): Lmdb save path.
        img_path_list (str): Image path list.
        keys (str): Used for lmdb keys.
        batch (int): After processing batch images, lmdb commits.
            Default: 5000.
        compress_level (int): Compress level when encoding images. Default: 1.
        multiprocessing_read (bool): Whether use multiprocessing to read all
            the images to memory. Default: False.
        n_thread (int): For multiprocessing.
        map_size (int | None): Map size for lmdb env. If None, use the
            estimated size from images. Default: None
    """

    assert len(img_path_list) == len(keys), ('img_path_list and keys should have the same length, '
                                             f'but got {len(img_path_list)} and {len(keys)}')
    print(f'Create lmdb for {data_path}, save to {lmdb_path}...')
    print(f'Totoal images: {len(img_path_list)}')
    if not lmdb_path.endswith('.lmdb'):
        raise ValueError("lmdb_path must end with '.lmdb'.")
    if osp.exists(lmdb_path):
        print(f'Folder {lmdb_path} already exists. Exit.')
        sys.exit(1)

    if multiprocessing_read:
        # read all the images to memory (multiprocessing)
        dataset = {}  # use dict to keep the order for multiprocessing
        shapes = {}
        print(f'Read images with multiprocessing, #thread: {n_thread} ...')
        pbar = tqdm(total=len(img_path_list), unit='image')

        def callback(arg):
            """get the image data and update pbar."""
            key, dataset[key], shapes[key] = arg
            pbar.update(1)
            pbar.set_description(f'Read {key}')

        pool = Pool(n_thread)
        for path, key in zip(img_path_list, keys):
            pool.apply_async(read_img_worker, args=(osp.join(data_path, path), key, compress_level), callback=callback)
        pool.close()
        pool.join()
        pbar.close()
        print(f'Finish reading {len(img_path_list)} images.')

    # create lmdb environment
    if map_size is None:
        # obtain data size for one image
        img = cv2.imread(osp.join(data_path, img_path_list[0]), cv2.IMREAD_UNCHANGED)
        _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level])
        data_size_per_img = img_byte.nbytes
        print('Data size per image is: ', data_size_per_img)
        data_size = data_size_per_img * len(img_path_list)
        map_size = data_size * 10

    env = lmdb.open(lmdb_path, map_size=map_size)

    # write data to lmdb
    pbar = tqdm(total=len(img_path_list), unit='chunk')
    txn = env.begin(write=True)
    txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w')
    for idx, (path, key) in enumerate(zip(img_path_list, keys)):
        pbar.update(1)
        pbar.set_description(f'Write {key}')
        key_byte = key.encode('ascii')
        if multiprocessing_read:
            img_byte = dataset[key]
            h, w, c = shapes[key]
        else:
            _, img_byte, img_shape = read_img_worker(osp.join(data_path, path), key, compress_level)
            h, w, c = img_shape

        txn.put(key_byte, img_byte)
        # write meta information
        txt_file.write(f'{key}.png ({h},{w},{c}) {compress_level}\n')
        if idx % batch == 0:
            txn.commit()
            txn = env.begin(write=True)
    pbar.close()
    txn.commit()
    env.close()
    txt_file.close()
    print('\nFinish writing lmdb.')


def read_img_worker(path, key, compress_level):
    """Read image worker.

    Args:
        path (str): Image path.
        key (str): Image key.
        compress_level (int): Compress level when encoding images.

    Returns:
        str: Image key.
        byte: Image byte.
        tuple[int]: Image shape.
    """

    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
    if img.ndim == 2:
        h, w = img.shape
        c = 1
    else:
        h, w, c = img.shape
    _, img_byte = cv2.imencode('.png', img, [cv2.IMWRITE_PNG_COMPRESSION, compress_level])
    return (key, img_byte, (h, w, c))


class LmdbMaker():
    """LMDB Maker.

    Args:
        lmdb_path (str): Lmdb save path.
        map_size (int): Map size for lmdb env. Default: 1024 ** 4, 1TB.
        batch (int): After processing batch images, lmdb commits.
            Default: 5000.
        compress_level (int): Compress level when encoding images. Default: 1.
    """

    def __init__(self, lmdb_path, map_size=1024**4, batch=5000, compress_level=1):
        if not lmdb_path.endswith('.lmdb'):
            raise ValueError("lmdb_path must end with '.lmdb'.")
        if osp.exists(lmdb_path):
            print(f'Folder {lmdb_path} already exists. Exit.')
            sys.exit(1)

        self.lmdb_path = lmdb_path
        self.batch = batch
        self.compress_level = compress_level
        self.env = lmdb.open(lmdb_path, map_size=map_size)
        self.txn = self.env.begin(write=True)
        self.txt_file = open(osp.join(lmdb_path, 'meta_info.txt'), 'w')
        self.counter = 0

    def put(self, img_byte, key, img_shape):
        self.counter += 1
        key_byte = key.encode('ascii')
        self.txn.put(key_byte, img_byte)
        # write meta information
        h, w, c = img_shape
        self.txt_file.write(f'{key}.png ({h},{w},{c}) {self.compress_level}\n')
        if self.counter % self.batch == 0:
            self.txn.commit()
            self.txn = self.env.begin(write=True)

    def close(self):
        self.txn.commit()
        self.env.close()
        self.txt_file.close()