File size: 6,962 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import math
import numpy as np
import torch


def cubic(x):
    """cubic function used for calculate_weights_indices."""
    absx = torch.abs(x)
    absx2 = absx**2
    absx3 = absx**3
    return (1.5 * absx3 - 2.5 * absx2 + 1) * (
        (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
                                                                                     (absx <= 2)).type_as(absx))


def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
    """Calculate weights and indices, used for imresize function.

    Args:
        in_length (int): Input length.
        out_length (int): Output length.
        scale (float): Scale factor.
        kernel_width (int): Kernel width.
        antialisaing (bool): Whether to apply anti-aliasing when downsampling.
    """

    if (scale < 1) and antialiasing:
        # Use a modified kernel (larger kernel width) to simultaneously
        # interpolate and antialias
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = torch.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5 + scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = torch.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    p = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
        out_length, p)

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices

    # apply cubic kernel
    if (scale < 1) and antialiasing:
        weights = scale * cubic(distance_to_center * scale)
    else:
        weights = cubic(distance_to_center)

    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = torch.sum(weights, 1).view(out_length, 1)
    weights = weights / weights_sum.expand(out_length, p)

    # If a column in weights is all zero, get rid of it. only consider the
    # first and last column.
    weights_zero_tmp = torch.sum((weights == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 1, p - 2)
        weights = weights.narrow(1, 1, p - 2)
    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 0, p - 2)
        weights = weights.narrow(1, 0, p - 2)
    weights = weights.contiguous()
    indices = indices.contiguous()
    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)


@torch.no_grad()
def imresize(img, scale, antialiasing=True):
    """imresize function same as MATLAB.

    It now only supports bicubic.
    The same scale applies for both height and width.

    Args:
        img (Tensor | Numpy array):
            Tensor: Input image with shape (c, h, w), [0, 1] range.
            Numpy: Input image with shape (h, w, c), [0, 1] range.
        scale (float): Scale factor. The same scale applies for both height
            and width.
        antialisaing (bool): Whether to apply anti-aliasing when downsampling.
            Default: True.

    Returns:
        Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
    """
    squeeze_flag = False
    if type(img).__module__ == np.__name__:  # numpy type
        numpy_type = True
        if img.ndim == 2:
            img = img[:, :, None]
            squeeze_flag = True
        img = torch.from_numpy(img.transpose(2, 0, 1)).float()
    else:
        numpy_type = False
        if img.ndim == 2:
            img = img.unsqueeze(0)
            squeeze_flag = True

    in_c, in_h, in_w = img.size()
    out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
    kernel_width = 4
    kernel = 'cubic'

    # get weights and indices
    weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
                                                                             antialiasing)
    weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
                                                                             antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
    img_aug.narrow(1, sym_len_hs, in_h).copy_(img)

    sym_patch = img[:, :sym_len_hs, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)

    sym_patch = img[:, -sym_len_he:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(in_c, out_h, in_w)
    kernel_width = weights_h.size(1)
    for i in range(out_h):
        idx = int(indices_h[i][0])
        for j in range(in_c):
            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
    out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)

    sym_patch = out_1[:, :, :sym_len_ws]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, :, -sym_len_we:]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(in_c, out_h, out_w)
    kernel_width = weights_w.size(1)
    for i in range(out_w):
        idx = int(indices_w[i][0])
        for j in range(in_c):
            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])

    if squeeze_flag:
        out_2 = out_2.squeeze(0)
    if numpy_type:
        out_2 = out_2.numpy()
        if not squeeze_flag:
            out_2 = out_2.transpose(1, 2, 0)

    return out_2