Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,044 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
Metadata-Version: 2.1
Name: diffusers
Version: 0.30.0.dev0
Summary: State-of-the-art diffusion in PyTorch and JAX.
Home-page: https://github.com/huggingface/diffusers
Author: The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/diffusers/graphs/contributors)
Author-email: diffusers@huggingface.co
License: Apache 2.0 License
Keywords: deep learning diffusion jax pytorch stable diffusion audioldm
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: importlib_metadata
Requires-Dist: filelock
Requires-Dist: huggingface-hub>=0.23.2
Requires-Dist: numpy
Requires-Dist: regex!=2019.12.17
Requires-Dist: requests
Requires-Dist: safetensors>=0.3.1
Requires-Dist: Pillow
Provides-Extra: quality
Requires-Dist: urllib3<=2.0.0; extra == "quality"
Requires-Dist: isort>=5.5.4; extra == "quality"
Requires-Dist: ruff==0.1.5; extra == "quality"
Requires-Dist: hf-doc-builder>=0.3.0; extra == "quality"
Provides-Extra: docs
Requires-Dist: hf-doc-builder>=0.3.0; extra == "docs"
Provides-Extra: training
Requires-Dist: accelerate>=0.31.0; extra == "training"
Requires-Dist: datasets; extra == "training"
Requires-Dist: protobuf<4,>=3.20.3; extra == "training"
Requires-Dist: tensorboard; extra == "training"
Requires-Dist: Jinja2; extra == "training"
Requires-Dist: peft>=0.6.0; extra == "training"
Provides-Extra: test
Requires-Dist: compel==0.1.8; extra == "test"
Requires-Dist: GitPython<3.1.19; extra == "test"
Requires-Dist: datasets; extra == "test"
Requires-Dist: Jinja2; extra == "test"
Requires-Dist: invisible-watermark>=0.2.0; extra == "test"
Requires-Dist: k-diffusion>=0.0.12; extra == "test"
Requires-Dist: librosa; extra == "test"
Requires-Dist: parameterized; extra == "test"
Requires-Dist: pytest; extra == "test"
Requires-Dist: pytest-timeout; extra == "test"
Requires-Dist: pytest-xdist; extra == "test"
Requires-Dist: requests-mock==1.10.0; extra == "test"
Requires-Dist: safetensors>=0.3.1; extra == "test"
Requires-Dist: sentencepiece!=0.1.92,>=0.1.91; extra == "test"
Requires-Dist: scipy; extra == "test"
Requires-Dist: torchvision; extra == "test"
Requires-Dist: transformers>=4.41.2; extra == "test"
Provides-Extra: torch
Requires-Dist: torch>=1.4; extra == "torch"
Requires-Dist: accelerate>=0.31.0; extra == "torch"
Provides-Extra: flax
Requires-Dist: jax>=0.4.1; extra == "flax"
Requires-Dist: jaxlib>=0.4.1; extra == "flax"
Requires-Dist: flax>=0.4.1; extra == "flax"
Provides-Extra: dev
Requires-Dist: urllib3<=2.0.0; extra == "dev"
Requires-Dist: isort>=5.5.4; extra == "dev"
Requires-Dist: ruff==0.1.5; extra == "dev"
Requires-Dist: hf-doc-builder>=0.3.0; extra == "dev"
Requires-Dist: compel==0.1.8; extra == "dev"
Requires-Dist: GitPython<3.1.19; extra == "dev"
Requires-Dist: datasets; extra == "dev"
Requires-Dist: Jinja2; extra == "dev"
Requires-Dist: invisible-watermark>=0.2.0; extra == "dev"
Requires-Dist: k-diffusion>=0.0.12; extra == "dev"
Requires-Dist: librosa; extra == "dev"
Requires-Dist: parameterized; extra == "dev"
Requires-Dist: pytest; extra == "dev"
Requires-Dist: pytest-timeout; extra == "dev"
Requires-Dist: pytest-xdist; extra == "dev"
Requires-Dist: requests-mock==1.10.0; extra == "dev"
Requires-Dist: safetensors>=0.3.1; extra == "dev"
Requires-Dist: sentencepiece!=0.1.92,>=0.1.91; extra == "dev"
Requires-Dist: scipy; extra == "dev"
Requires-Dist: torchvision; extra == "dev"
Requires-Dist: transformers>=4.41.2; extra == "dev"
Requires-Dist: accelerate>=0.31.0; extra == "dev"
Requires-Dist: datasets; extra == "dev"
Requires-Dist: protobuf<4,>=3.20.3; extra == "dev"
Requires-Dist: tensorboard; extra == "dev"
Requires-Dist: Jinja2; extra == "dev"
Requires-Dist: peft>=0.6.0; extra == "dev"
Requires-Dist: hf-doc-builder>=0.3.0; extra == "dev"
Requires-Dist: torch>=1.4; extra == "dev"
Requires-Dist: accelerate>=0.31.0; extra == "dev"
Requires-Dist: jax>=0.4.1; extra == "dev"
Requires-Dist: jaxlib>=0.4.1; extra == "dev"
Requires-Dist: flax>=0.4.1; extra == "dev"
<!---
Copyright 2022 - The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"></a>
<a href="https://github.com/huggingface/diffusers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"></a>
<a href="https://pepy.tech/project/diffusers"><img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month"></a>
<a href="CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg"></a>
<a href="https://twitter.com/diffuserslib"><img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib"></a>
</p>
π€ Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, π€ Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
π€ Diffusers offers three core components:
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
## Installation
We recommend installing π€ Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
### PyTorch
With `pip` (official package):
```bash
pip install --upgrade diffusers[torch]
```
With `conda` (maintained by the community):
```sh
conda install -c conda-forge diffusers
```
### Flax
With `pip` (official package):
```bash
pip install --upgrade diffusers[flax]
```
### Apple Silicon (M1/M2) support
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.
## Quickstart
Generating outputs is super easy with π€ Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 30,000+ checkpoints):
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
You can also dig into the models and schedulers toolbox to build your own diffusion system:
```python
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
input = noise
for t in scheduler.timesteps:
with torch.no_grad():
noisy_residual = model(input, t).sample
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image
```
Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today!
## How to navigate the documentation
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
We β€οΈ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Also, say π in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out β.
## Popular Tasks & Pipelines
<table>
<tr>
<th>Task</th>
<th>Pipeline</th>
<th>π€ Hub</th>
</tr>
<tr style="border-top: 2px solid black">
<td>Unconditional Image Generation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td>
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
</tr>
<tr>
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
</tr>
</table>
## Popular libraries using 𧨠Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +14,000 other amazing GitHub repositories πͺ
Thank you for using us β€οΈ.
## Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim)
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
## Citation
```bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
```
|