Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,064 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import cv2
import random
import torch
def mod_crop(img, scale):
"""Mod crop images, used during testing.
Args:
img (ndarray): Input image.
scale (int): Scale factor.
Returns:
ndarray: Result image.
"""
img = img.copy()
if img.ndim in (2, 3):
h, w = img.shape[0], img.shape[1]
h_remainder, w_remainder = h % scale, w % scale
img = img[:h - h_remainder, :w - w_remainder, ...]
else:
raise ValueError(f'Wrong img ndim: {img.ndim}.')
return img
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
"""Paired random crop. Support Numpy array and Tensor inputs.
It crops lists of lq and gt images with corresponding locations.
Args:
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
gt_patch_size (int): GT patch size.
scale (int): Scale factor.
gt_path (str): Path to ground-truth. Default: None.
Returns:
list[ndarray] | ndarray: GT images and LQ images. If returned results
only have one element, just return ndarray.
"""
if not isinstance(img_gts, list):
img_gts = [img_gts]
if not isinstance(img_lqs, list):
img_lqs = [img_lqs]
# determine input type: Numpy array or Tensor
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
if input_type == 'Tensor':
h_lq, w_lq = img_lqs[0].size()[-2:]
h_gt, w_gt = img_gts[0].size()[-2:]
else:
h_lq, w_lq = img_lqs[0].shape[0:2]
h_gt, w_gt = img_gts[0].shape[0:2]
lq_patch_size = gt_patch_size // scale
if h_gt != h_lq * scale or w_gt != w_lq * scale:
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
f'multiplication of LQ ({h_lq}, {w_lq}).')
if h_lq < lq_patch_size or w_lq < lq_patch_size:
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
f'({lq_patch_size}, {lq_patch_size}). '
f'Please remove {gt_path}.')
# randomly choose top and left coordinates for lq patch
top = random.randint(0, h_lq - lq_patch_size)
left = random.randint(0, w_lq - lq_patch_size)
# crop lq patch
if input_type == 'Tensor':
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
else:
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
# crop corresponding gt patch
top_gt, left_gt = int(top * scale), int(left * scale)
if input_type == 'Tensor':
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
else:
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
if len(img_gts) == 1:
img_gts = img_gts[0]
if len(img_lqs) == 1:
img_lqs = img_lqs[0]
return img_gts, img_lqs
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
We use vertical flip and transpose for rotation implementation.
All the images in the list use the same augmentation.
Args:
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
is an ndarray, it will be transformed to a list.
hflip (bool): Horizontal flip. Default: True.
rotation (bool): Ratotation. Default: True.
flows (list[ndarray]: Flows to be augmented. If the input is an
ndarray, it will be transformed to a list.
Dimension is (h, w, 2). Default: None.
return_status (bool): Return the status of flip and rotation.
Default: False.
Returns:
list[ndarray] | ndarray: Augmented images and flows. If returned
results only have one element, just return ndarray.
"""
hflip = hflip and random.random() < 0.5
vflip = rotation and random.random() < 0.5
rot90 = rotation and random.random() < 0.5
def _augment(img):
if hflip: # horizontal
cv2.flip(img, 1, img)
if vflip: # vertical
cv2.flip(img, 0, img)
if rot90:
img = img.transpose(1, 0, 2)
return img
def _augment_flow(flow):
if hflip: # horizontal
cv2.flip(flow, 1, flow)
flow[:, :, 0] *= -1
if vflip: # vertical
cv2.flip(flow, 0, flow)
flow[:, :, 1] *= -1
if rot90:
flow = flow.transpose(1, 0, 2)
flow = flow[:, :, [1, 0]]
return flow
if not isinstance(imgs, list):
imgs = [imgs]
imgs = [_augment(img) for img in imgs]
if len(imgs) == 1:
imgs = imgs[0]
if flows is not None:
if not isinstance(flows, list):
flows = [flows]
flows = [_augment_flow(flow) for flow in flows]
if len(flows) == 1:
flows = flows[0]
return imgs, flows
else:
if return_status:
return imgs, (hflip, vflip, rot90)
else:
return imgs
def img_rotate(img, angle, center=None, scale=1.0):
"""Rotate image.
Args:
img (ndarray): Image to be rotated.
angle (float): Rotation angle in degrees. Positive values mean
counter-clockwise rotation.
center (tuple[int]): Rotation center. If the center is None,
initialize it as the center of the image. Default: None.
scale (float): Isotropic scale factor. Default: 1.0.
"""
(h, w) = img.shape[:2]
if center is None:
center = (w // 2, h // 2)
matrix = cv2.getRotationMatrix2D(center, angle, scale)
rotated_img = cv2.warpAffine(img, matrix, (w, h))
return rotated_img
def random_crop(im, pch_size):
'''
Randomly crop a patch from the give image.
'''
h, w = im.shape[:2]
# padding if necessary
if h < pch_size or w < pch_size:
pad_h = min(max(0, pch_size - h), h)
pad_w = min(max(0, pch_size - w), w)
im = cv2.copyMakeBorder(im, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
h, w = im.shape[:2]
if h == pch_size:
ind_h = 0
elif h > pch_size:
ind_h = random.randint(0, h-pch_size)
else:
raise ValueError('Image height is smaller than the patch size')
if w == pch_size:
ind_w = 0
elif w > pch_size:
ind_w = random.randint(0, w-pch_size)
else:
raise ValueError('Image width is smaller than the patch size')
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,]
return im_pch
|