File size: 15,666 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"""
Modified from https://github.com/mlomnitz/DiffJPEG

For images not divisible by 8
https://dsp.stackexchange.com/questions/35339/jpeg-dct-padding/35343#35343
"""
import itertools
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F

# ------------------------ utils ------------------------#
y_table = np.array(
    [[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60, 55], [14, 13, 16, 24, 40, 57, 69, 56],
     [14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103, 77], [24, 35, 55, 64, 81, 104, 113, 92],
     [49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]],
    dtype=np.float32).T
y_table = nn.Parameter(torch.from_numpy(y_table))
c_table = np.empty((8, 8), dtype=np.float32)
c_table.fill(99)
c_table[:4, :4] = np.array([[17, 18, 24, 47], [18, 21, 26, 66], [24, 26, 56, 99], [47, 66, 99, 99]]).T
c_table = nn.Parameter(torch.from_numpy(c_table))


def diff_round(x):
    """ Differentiable rounding function
    """
    return torch.round(x) + (x - torch.round(x))**3


def quality_to_factor(quality):
    """ Calculate factor corresponding to quality

    Args:
        quality(float): Quality for jpeg compression.

    Returns:
        float: Compression factor.
    """
    if quality < 50:
        quality = 5000. / quality
    else:
        quality = 200. - quality * 2
    return quality / 100.


# ------------------------ compression ------------------------#
class RGB2YCbCrJpeg(nn.Module):
    """ Converts RGB image to YCbCr
    """

    def __init__(self):
        super(RGB2YCbCrJpeg, self).__init__()
        matrix = np.array([[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]],
                          dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0., 128., 128.]))
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        """
        Args:
            image(Tensor): batch x 3 x height x width

        Returns:
            Tensor: batch x height x width x 3
        """
        image = image.permute(0, 2, 3, 1)
        result = torch.tensordot(image, self.matrix, dims=1) + self.shift
        return result.view(image.shape)


class ChromaSubsampling(nn.Module):
    """ Chroma subsampling on CbCr channels
    """

    def __init__(self):
        super(ChromaSubsampling, self).__init__()

    def forward(self, image):
        """
        Args:
            image(tensor): batch x height x width x 3

        Returns:
            y(tensor): batch x height x width
            cb(tensor): batch x height/2 x width/2
            cr(tensor): batch x height/2 x width/2
        """
        image_2 = image.permute(0, 3, 1, 2).clone()
        cb = F.avg_pool2d(image_2[:, 1, :, :].unsqueeze(1), kernel_size=2, stride=(2, 2), count_include_pad=False)
        cr = F.avg_pool2d(image_2[:, 2, :, :].unsqueeze(1), kernel_size=2, stride=(2, 2), count_include_pad=False)
        cb = cb.permute(0, 2, 3, 1)
        cr = cr.permute(0, 2, 3, 1)
        return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)


class BlockSplitting(nn.Module):
    """ Splitting image into patches
    """

    def __init__(self):
        super(BlockSplitting, self).__init__()
        self.k = 8

    def forward(self, image):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor:  batch x h*w/64 x h x w
        """
        height, _ = image.shape[1:3]
        batch_size = image.shape[0]
        image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)


class DCT8x8(nn.Module):
    """ Discrete Cosine Transformation
    """

    def __init__(self):
        super(DCT8x8, self).__init__()
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos((2 * y + 1) * v * np.pi / 16)
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
        self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float())

    def forward(self, image):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        image = image - 128
        result = self.scale * torch.tensordot(image, self.tensor, dims=2)
        result.view(image.shape)
        return result


class YQuantize(nn.Module):
    """ JPEG Quantization for Y channel

    Args:
        rounding(function): rounding function to use
    """

    def __init__(self, rounding):
        super(YQuantize, self).__init__()
        self.rounding = rounding
        self.y_table = y_table

    def forward(self, image, factor=1):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        if isinstance(factor, (int, float)):
            image = image.float() / (self.y_table * factor)
        else:
            b = factor.size(0)
            table = self.y_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1)
            image = image.float() / table
        image = self.rounding(image)
        return image


class CQuantize(nn.Module):
    """ JPEG Quantization for CbCr channels

    Args:
        rounding(function): rounding function to use
    """

    def __init__(self, rounding):
        super(CQuantize, self).__init__()
        self.rounding = rounding
        self.c_table = c_table

    def forward(self, image, factor=1):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        if isinstance(factor, (int, float)):
            image = image.float() / (self.c_table * factor)
        else:
            b = factor.size(0)
            table = self.c_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1)
            image = image.float() / table
        image = self.rounding(image)
        return image


class CompressJpeg(nn.Module):
    """Full JPEG compression algorithm

    Args:
        rounding(function): rounding function to use
    """

    def __init__(self, rounding=torch.round):
        super(CompressJpeg, self).__init__()
        self.l1 = nn.Sequential(RGB2YCbCrJpeg(), ChromaSubsampling())
        self.l2 = nn.Sequential(BlockSplitting(), DCT8x8())
        self.c_quantize = CQuantize(rounding=rounding)
        self.y_quantize = YQuantize(rounding=rounding)

    def forward(self, image, factor=1):
        """
        Args:
            image(tensor): batch x 3 x height x width

        Returns:
            dict(tensor): Compressed tensor with batch x h*w/64 x 8 x 8.
        """
        y, cb, cr = self.l1(image * 255)
        components = {'y': y, 'cb': cb, 'cr': cr}
        for k in components.keys():
            comp = self.l2(components[k])
            if k in ('cb', 'cr'):
                comp = self.c_quantize(comp, factor=factor)
            else:
                comp = self.y_quantize(comp, factor=factor)

            components[k] = comp

        return components['y'], components['cb'], components['cr']


# ------------------------ decompression ------------------------#


class YDequantize(nn.Module):
    """Dequantize Y channel
    """

    def __init__(self):
        super(YDequantize, self).__init__()
        self.y_table = y_table

    def forward(self, image, factor=1):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        if isinstance(factor, (int, float)):
            out = image * (self.y_table * factor)
        else:
            b = factor.size(0)
            table = self.y_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1)
            out = image * table
        return out


class CDequantize(nn.Module):
    """Dequantize CbCr channel
    """

    def __init__(self):
        super(CDequantize, self).__init__()
        self.c_table = c_table

    def forward(self, image, factor=1):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        if isinstance(factor, (int, float)):
            out = image * (self.c_table * factor)
        else:
            b = factor.size(0)
            table = self.c_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1)
            out = image * table
        return out


class iDCT8x8(nn.Module):
    """Inverse discrete Cosine Transformation
    """

    def __init__(self):
        super(iDCT8x8, self).__init__()
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float())
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos((2 * v + 1) * y * np.pi / 16)
        self.tensor = nn.Parameter(torch.from_numpy(tensor).float())

    def forward(self, image):
        """
        Args:
            image(tensor): batch x height x width

        Returns:
            Tensor: batch x height x width
        """
        image = image * self.alpha
        result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128
        result.view(image.shape)
        return result


class BlockMerging(nn.Module):
    """Merge patches into image
    """

    def __init__(self):
        super(BlockMerging, self).__init__()

    def forward(self, patches, height, width):
        """
        Args:
            patches(tensor) batch x height*width/64, height x width
            height(int)
            width(int)

        Returns:
            Tensor: batch x height x width
        """
        k = 8
        batch_size = patches.shape[0]
        image_reshaped = patches.view(batch_size, height // k, width // k, k, k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, height, width)


class ChromaUpsampling(nn.Module):
    """Upsample chroma layers
    """

    def __init__(self):
        super(ChromaUpsampling, self).__init__()

    def forward(self, y, cb, cr):
        """
        Args:
            y(tensor): y channel image
            cb(tensor): cb channel
            cr(tensor): cr channel

        Returns:
            Tensor: batch x height x width x 3
        """

        def repeat(x, k=2):
            height, width = x.shape[1:3]
            x = x.unsqueeze(-1)
            x = x.repeat(1, 1, k, k)
            x = x.view(-1, height * k, width * k)
            return x

        cb = repeat(cb)
        cr = repeat(cr)
        return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)


class YCbCr2RGBJpeg(nn.Module):
    """Converts YCbCr image to RGB JPEG
    """

    def __init__(self):
        super(YCbCr2RGBJpeg, self).__init__()

        matrix = np.array([[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]], dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0, -128., -128.]))
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        """
        Args:
            image(tensor): batch x height x width x 3

        Returns:
            Tensor: batch x 3 x height x width
        """
        result = torch.tensordot(image + self.shift, self.matrix, dims=1)
        return result.view(image.shape).permute(0, 3, 1, 2)


class DeCompressJpeg(nn.Module):
    """Full JPEG decompression algorithm

    Args:
        rounding(function): rounding function to use
    """

    def __init__(self, rounding=torch.round):
        super(DeCompressJpeg, self).__init__()
        self.c_dequantize = CDequantize()
        self.y_dequantize = YDequantize()
        self.idct = iDCT8x8()
        self.merging = BlockMerging()
        self.chroma = ChromaUpsampling()
        self.colors = YCbCr2RGBJpeg()

    def forward(self, y, cb, cr, imgh, imgw, factor=1):
        """
        Args:
            compressed(dict(tensor)): batch x h*w/64 x 8 x 8
            imgh(int)
            imgw(int)
            factor(float)

        Returns:
            Tensor: batch x 3 x height x width
        """
        components = {'y': y, 'cb': cb, 'cr': cr}
        for k in components.keys():
            if k in ('cb', 'cr'):
                comp = self.c_dequantize(components[k], factor=factor)
                height, width = int(imgh / 2), int(imgw / 2)
            else:
                comp = self.y_dequantize(components[k], factor=factor)
                height, width = imgh, imgw
            comp = self.idct(comp)
            components[k] = self.merging(comp, height, width)
            #
        image = self.chroma(components['y'], components['cb'], components['cr'])
        image = self.colors(image)

        image = torch.min(255 * torch.ones_like(image), torch.max(torch.zeros_like(image), image))
        return image / 255


# ------------------------ main DiffJPEG ------------------------ #


class DiffJPEG(nn.Module):
    """This JPEG algorithm result is slightly different from cv2.
    DiffJPEG supports batch processing.

    Args:
        differentiable(bool): If True, uses custom differentiable rounding function, if False, uses standard torch.round
    """

    def __init__(self, differentiable=True):
        super(DiffJPEG, self).__init__()
        if differentiable:
            rounding = diff_round
        else:
            rounding = torch.round

        self.compress = CompressJpeg(rounding=rounding)
        self.decompress = DeCompressJpeg(rounding=rounding)

    def forward(self, x, quality):
        """
        Args:
            x (Tensor): Input image, bchw, rgb, [0, 1]
            quality(float): Quality factor for jpeg compression scheme.
        """
        factor = quality
        if isinstance(factor, (int, float)):
            factor = quality_to_factor(factor)
        else:
            for i in range(factor.size(0)):
                factor[i] = quality_to_factor(factor[i])
        h, w = x.size()[-2:]
        h_pad, w_pad = 0, 0
        # why should use 16
        if h % 16 != 0:
            h_pad = 16 - h % 16
        if w % 16 != 0:
            w_pad = 16 - w % 16
        x = F.pad(x, (0, w_pad, 0, h_pad), mode='constant', value=0)

        y, cb, cr = self.compress(x, factor=factor)
        recovered = self.decompress(y, cb, cr, (h + h_pad), (w + w_pad), factor=factor)
        recovered = recovered[:, :, 0:h, 0:w]
        return recovered


if __name__ == '__main__':
    import cv2

    from basicsr.utils import img2tensor, tensor2img

    img_gt = cv2.imread('test.png') / 255.

    # -------------- cv2 -------------- #
    encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 20]
    _, encimg = cv2.imencode('.jpg', img_gt * 255., encode_param)
    img_lq = np.float32(cv2.imdecode(encimg, 1))
    cv2.imwrite('cv2_JPEG_20.png', img_lq)

    # -------------- DiffJPEG -------------- #
    jpeger = DiffJPEG(differentiable=False).cuda()
    img_gt = img2tensor(img_gt)
    img_gt = torch.stack([img_gt, img_gt]).cuda()
    quality = img_gt.new_tensor([20, 40])
    out = jpeger(img_gt, quality=quality)

    cv2.imwrite('pt_JPEG_20.png', tensor2img(out[0]))
    cv2.imwrite('pt_JPEG_40.png', tensor2img(out[1]))