File size: 6,223 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import math
import numpy as np
import os
import torch
from torchvision.utils import make_grid


def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.

    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.

    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == 'float64':
                img = img.astype('float32')
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    else:
        return _totensor(imgs, bgr2rgb, float32)


def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
    """Convert torch Tensors into image numpy arrays.

    After clamping to [min, max], values will be normalized to [0, 1].

    Args:
        tensor (Tensor or list[Tensor]): Accept shapes:
            1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
            2) 3D Tensor of shape (3/1 x H x W);
            3) 2D Tensor of shape (H x W).
            Tensor channel should be in RGB order.
        rgb2bgr (bool): Whether to change rgb to bgr.
        out_type (numpy type): output types. If ``np.uint8``, transform outputs
            to uint8 type with range [0, 255]; otherwise, float type with
            range [0, 1]. Default: ``np.uint8``.
        min_max (tuple[int]): min and max values for clamp.

    Returns:
        (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
        shape (H x W). The channel order is BGR.
    """
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    if torch.is_tensor(tensor):
        tensor = [tensor]
    result = []
    for _tensor in tensor:
        _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
        _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])

        n_dim = _tensor.dim()
        if n_dim == 4:
            img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
            img_np = img_np.transpose(1, 2, 0)
            if rgb2bgr:
                img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 3:
            img_np = _tensor.numpy()
            img_np = img_np.transpose(1, 2, 0)
            if img_np.shape[2] == 1:  # gray image
                img_np = np.squeeze(img_np, axis=2)
            else:
                if rgb2bgr:
                    img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 2:
            img_np = _tensor.numpy()
        else:
            raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
        if out_type == np.uint8:
            # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
            img_np = (img_np * 255.0).round()
        img_np = img_np.astype(out_type)
        result.append(img_np)
    if len(result) == 1 and torch.is_tensor(tensor):
        result = result[0]
    return result


def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
    """This implementation is slightly faster than tensor2img.
    It now only supports torch tensor with shape (1, c, h, w).

    Args:
        tensor (Tensor): Now only support torch tensor with (1, c, h, w).
        rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
        min_max (tuple[int]): min and max values for clamp.
    """
    output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
    output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
    output = output.type(torch.uint8).cpu().numpy()
    if rgb2bgr:
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
    return output


def imfrombytes(content, flag='color', float32=False):
    """Read an image from bytes.

    Args:
        content (bytes): Image bytes got from files or other streams.
        flag (str): Flags specifying the color type of a loaded image,
            candidates are `color`, `grayscale` and `unchanged`.
        float32 (bool): Whether to change to float32., If True, will also norm
            to [0, 1]. Default: False.

    Returns:
        ndarray: Loaded image array.
    """
    img_np = np.frombuffer(content, np.uint8)
    imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
    img = cv2.imdecode(img_np, imread_flags[flag])
    if float32:
        img = img.astype(np.float32) / 255.
    return img


def imwrite(img, file_path, params=None, auto_mkdir=True):
    """Write image to file.

    Args:
        img (ndarray): Image array to be written.
        file_path (str): Image file path.
        params (None or list): Same as opencv's :func:`imwrite` interface.
        auto_mkdir (bool): If the parent folder of `file_path` does not exist,
            whether to create it automatically.

    Returns:
        bool: Successful or not.
    """
    if auto_mkdir:
        dir_name = os.path.abspath(os.path.dirname(file_path))
        os.makedirs(dir_name, exist_ok=True)
    ok = cv2.imwrite(file_path, img, params)
    if not ok:
        raise IOError('Failed in writing images.')


def crop_border(imgs, crop_border):
    """Crop borders of images.

    Args:
        imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
        crop_border (int): Crop border for each end of height and weight.

    Returns:
        list[ndarray]: Cropped images.
    """
    if crop_border == 0:
        return imgs
    else:
        if isinstance(imgs, list):
            return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
        else:
            return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]