Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,191 Bytes
bfa59ab 2868b95 bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27
import os, sys, math, random
import cv2
import numpy as np
from pathlib import Path
from loguru import logger
from omegaconf import OmegaConf
from utils import util_net
from utils import util_image
from utils import util_common
from utils import util_color_fix
import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from datapipe.datasets import create_dataset
from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL
_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\
'meticulous detailing, hyper sharpness, perfect without deformations'
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\
'painting, drawing, sketch, oil painting'
def get_torch_dtype(torch_dtype: str):
if torch_dtype == 'torch.float16':
return torch.float16
elif torch_dtype == 'torch.bfloat16':
return torch.bfloat16
elif torch_dtype == 'torch.float32':
return torch.float32
else:
raise ValueError(f'Unexpected torch dtype:{torch_dtype}')
class BaseSampler:
def __init__(self, configs):
'''
Input:
configs: config, see the yaml file in folder ./configs/
configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps}
seed: int, random seed
'''
self.configs = configs
self.setup_seed()
self.build_model()
def setup_seed(self, seed=None):
seed = self.configs.seed if seed is None else seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def write_log(self, log_str):
print(log_str, flush=True)
def build_model(self):
# Build Stable diffusion
params = dict(self.configs.sd_pipe.params)
torch_dtype = params.pop('torch_dtype')
params['torch_dtype'] = get_torch_dtype(torch_dtype)
base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params)
if self.configs.get('scheduler', None) is not None:
pipe_id = self.configs.scheduler.target.split('.')[-1]
self.write_log(f'Loading scheduler of {pipe_id}...')
base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config(
base_pipe.scheduler.config
)
self.write_log('Loaded Done')
if self.configs.get('vae_fp16', None) is not None:
params_vae = dict(self.configs.vae_fp16.params)
torch_dtype = params_vae.pop('torch_dtype')
params_vae['torch_dtype'] = get_torch_dtype(torch_dtype)
pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path
self.write_log(f'Loading improved vae from {pipe_id}...')
base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained(
**params_vae,
)
self.write_log('Loaded Done')
if self.configs.base_model in ['sd-turbo', 'sd2base'] :
sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe)
else:
raise ValueError(f"Unsupported base model: {self.configs.base_model}!")
sd_pipe.to(f"cuda")
if self.configs.sliced_vae:
sd_pipe.vae.enable_slicing()
if self.configs.tiled_vae:
sd_pipe.vae.enable_tiling()
sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size
sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size
if self.configs.gradient_checkpointing_vae:
self.write_log(f"Activating gradient checkpoing for vae...")
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True)
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True)
model_configs = self.configs.model_start
params = model_configs.get('params', dict)
model_start = util_common.get_obj_from_str(model_configs.target)(**params)
model_start.cuda()
ckpt_path = model_configs.get('ckpt_path')
assert ckpt_path is not None
self.write_log(f"Loading started model from {ckpt_path}...")
state = torch.load(ckpt_path, map_location=f"cuda")
if 'state_dict' in state:
state = state['state_dict']
util_net.reload_model(model_start, state)
self.write_log(f"Loading Done")
model_start.eval()
setattr(sd_pipe, 'start_noise_predictor', model_start)
self.sd_pipe = sd_pipe
class InvSamplerSR(BaseSampler):
@torch.no_grad()
def sample_func(self, im_cond):
'''
Input:
im_cond: b x c x h x w, torch tensor, [0,1], RGB
Output:
xt: h x w x c, numpy array, [0,1], RGB
'''
if self.configs.cfg_scale > 1.0:
negative_prompt = [_negative,]*im_cond.shape[0]
else:
negative_prompt = None
ori_h_lq, ori_w_lq = im_cond.shape[-2:]
ori_w_hq = ori_w_lq * self.configs.basesr.sf
ori_h_hq = ori_h_lq * self.configs.basesr.sf
vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1))
if hasattr(self.sd_pipe, 'unet'):
diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1))
else:
diffusion_sf = self.sd_pipe.transformer.patch_size
mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf
idle_pch_size = self.configs.basesr.chopping.pch_size
if min(im_cond.shape[-2:]) >= idle_pch_size:
pad_h_up = pad_w_left = 0
else:
while min(im_cond.shape[-2:]) < idle_pch_size:
pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0)
pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0)
pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0)
pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0)
im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect')
if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size:
target_size = (
im_cond.shape[-2] * self.configs.basesr.sf,
im_cond.shape[-1] * self.configs.basesr.sf
)
res_sr = self.sd_pipe(
image=im_cond.type(torch.float16),
prompt=[_positive, ]*im_cond.shape[0],
negative_prompt=negative_prompt,
target_size=target_size,
timesteps=self.configs.timesteps,
guidance_scale=self.configs.cfg_scale,
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
).images
else:
if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0):
target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq
target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq
pad_h = target_h_lq - im_cond.shape[-2]
pad_w = target_w_lq - im_cond.shape[-1]
im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect')
im_spliter = util_image.ImageSpliterTh(
im_cond,
pch_size=idle_pch_size,
stride= int(idle_pch_size * 0.50),
sf=self.configs.basesr.sf,
weight_type=self.configs.basesr.chopping.weight_type,
extra_bs=1 if self.configs.bs > 1 else self.configs.bs,
)
for im_lq_pch, index_infos in im_spliter:
target_size = (
im_lq_pch.shape[-2] * self.configs.basesr.sf,
im_lq_pch.shape[-1] * self.configs.basesr.sf,
)
# start = torch.cuda.Event(enable_timing=True)
# end = torch.cuda.Event(enable_timing=True)
# start.record()
res_sr_pch = self.sd_pipe(
image=im_lq_pch.type(torch.float16),
prompt=[_positive, ]*im_lq_pch.shape[0],
negative_prompt=negative_prompt,
target_size=target_size,
timesteps=self.configs.timesteps,
guidance_scale=self.configs.cfg_scale,
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
).images
# end.record()
# torch.cuda.synchronize()
# print(f"Time: {start.elapsed_time(end):.6f}")
im_spliter.update(res_sr_pch, index_infos)
res_sr = im_spliter.gather()
pad_h_up *= self.configs.basesr.sf
pad_w_left *= self.configs.basesr.sf
res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left]
if self.configs.color_fix:
im_cond_up = F.interpolate(
im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True
)
if self.configs.color_fix == 'ycbcr':
res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up)
elif self.configs.color_fix == 'wavelet':
res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up)
else:
raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}")
res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy()
return res_sr
def inference(self, in_path, out_path, bs=1):
'''
Inference demo.
Input:
in_path: str, folder or image path for LQ image
out_path: str, folder save the results
bs: int, default bs=1, bs % num_gpus == 0
'''
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path
if not out_path.exists():
out_path.mkdir(parents=True)
if in_path.is_dir():
data_config = {'type': 'base',
'params': {'dir_path': str(in_path),
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.0,
'std': 1.0,
},
'need_path': True,
'recursive': False,
'length': None,
}
}
dataset = create_dataset(data_config)
self.write_log(f'Find {len(dataset)} images in {in_path}')
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=bs, shuffle=False, drop_last=False,
)
for data in dataloader:
res = self.sample_func(data['lq'].cuda())
for jj in range(res.shape[0]):
im_name = Path(data['path'][jj]).stem
save_path = str(out_path / f"{im_name}.png")
util_image.imwrite(res[jj], save_path, dtype_in='float32')
else:
im_cond = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c
im_cond = util_image.img2tensor(im_cond).cuda() # 1 x c x h x w
image = self.sample_func(im_cond).squeeze(0)
save_path = str(out_path / f"{in_path.stem}.png")
util_image.imwrite(image, save_path, dtype_in='float32')
self.write_log(f"Processing done, enjoy the results in {str(out_path)}")
if __name__ == '__main__':
pass
|