File size: 5,332 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch - Flax general utilities."""

import re

import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey

from ..utils import logging


logger = logging.get_logger(__name__)


def rename_key(key):
    regex = r"\w+[.]\d+"
    pats = re.findall(regex, key)
    for pat in pats:
        key = key.replace(pat, "_".join(pat.split(".")))
    return key


#####################
# PyTorch => Flax #
#####################


# Adapted from https://github.com/huggingface/transformers/blob/c603c80f46881ae18b2ca50770ef65fa4033eacd/src/transformers/modeling_flax_pytorch_utils.py#L69
# and https://github.com/patil-suraj/stable-diffusion-jax/blob/main/stable_diffusion_jax/convert_diffusers_to_jax.py
def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict):
    """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
    # conv norm or layer norm
    renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)

    # rename attention layers
    if len(pt_tuple_key) > 1:
        for rename_from, rename_to in (
            ("to_out_0", "proj_attn"),
            ("to_k", "key"),
            ("to_v", "value"),
            ("to_q", "query"),
        ):
            if pt_tuple_key[-2] == rename_from:
                weight_name = pt_tuple_key[-1]
                weight_name = "kernel" if weight_name == "weight" else weight_name
                renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name)
                if renamed_pt_tuple_key in random_flax_state_dict:
                    assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape
                    return renamed_pt_tuple_key, pt_tensor.T

    if (
        any("norm" in str_ for str_ in pt_tuple_key)
        and (pt_tuple_key[-1] == "bias")
        and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
        and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
    ):
        renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
        return renamed_pt_tuple_key, pt_tensor
    elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
        renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
        return renamed_pt_tuple_key, pt_tensor

    # embedding
    if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
        pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
        return renamed_pt_tuple_key, pt_tensor

    # conv layer
    renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
    if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
        pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
        return renamed_pt_tuple_key, pt_tensor

    # linear layer
    renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
    if pt_tuple_key[-1] == "weight":
        pt_tensor = pt_tensor.T
        return renamed_pt_tuple_key, pt_tensor

    # old PyTorch layer norm weight
    renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
    if pt_tuple_key[-1] == "gamma":
        return renamed_pt_tuple_key, pt_tensor

    # old PyTorch layer norm bias
    renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
    if pt_tuple_key[-1] == "beta":
        return renamed_pt_tuple_key, pt_tensor

    return pt_tuple_key, pt_tensor


def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42):
    # Step 1: Convert pytorch tensor to numpy
    pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}

    # Step 2: Since the model is stateless, get random Flax params
    random_flax_params = flax_model.init_weights(PRNGKey(init_key))

    random_flax_state_dict = flatten_dict(random_flax_params)
    flax_state_dict = {}

    # Need to change some parameters name to match Flax names
    for pt_key, pt_tensor in pt_state_dict.items():
        renamed_pt_key = rename_key(pt_key)
        pt_tuple_key = tuple(renamed_pt_key.split("."))

        # Correctly rename weight parameters
        flax_key, flax_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict)

        if flax_key in random_flax_state_dict:
            if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
                raise ValueError(
                    f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
                    f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
                )

        # also add unexpected weight so that warning is thrown
        flax_state_dict[flax_key] = jnp.asarray(flax_tensor)

    return unflatten_dict(flax_state_dict)