Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,332 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch - Flax general utilities."""
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
logger = logging.get_logger(__name__)
def rename_key(key):
regex = r"\w+[.]\d+"
pats = re.findall(regex, key)
for pat in pats:
key = key.replace(pat, "_".join(pat.split(".")))
return key
#####################
# PyTorch => Flax #
#####################
# Adapted from https://github.com/huggingface/transformers/blob/c603c80f46881ae18b2ca50770ef65fa4033eacd/src/transformers/modeling_flax_pytorch_utils.py#L69
# and https://github.com/patil-suraj/stable-diffusion-jax/blob/main/stable_diffusion_jax/convert_diffusers_to_jax.py
def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict):
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
# conv norm or layer norm
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
# rename attention layers
if len(pt_tuple_key) > 1:
for rename_from, rename_to in (
("to_out_0", "proj_attn"),
("to_k", "key"),
("to_v", "value"),
("to_q", "query"),
):
if pt_tuple_key[-2] == rename_from:
weight_name = pt_tuple_key[-1]
weight_name = "kernel" if weight_name == "weight" else weight_name
renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name)
if renamed_pt_tuple_key in random_flax_state_dict:
assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape
return renamed_pt_tuple_key, pt_tensor.T
if (
any("norm" in str_ for str_ in pt_tuple_key)
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
pt_tensor = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42):
# Step 1: Convert pytorch tensor to numpy
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
random_flax_params = flax_model.init_weights(PRNGKey(init_key))
random_flax_state_dict = flatten_dict(random_flax_params)
flax_state_dict = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
renamed_pt_key = rename_key(pt_key)
pt_tuple_key = tuple(renamed_pt_key.split("."))
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict)
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = jnp.asarray(flax_tensor)
return unflatten_dict(flax_state_dict)
|