Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
# Power by Zongsheng Yue 2022-07-13 16:59:27 | |
import os, sys, math, random | |
import cv2 | |
import numpy as np | |
from pathlib import Path | |
from loguru import logger | |
from omegaconf import OmegaConf | |
from trainer import get_torch_dtype | |
from utils import util_net | |
from utils import util_image | |
from utils import util_common | |
from utils import util_color_fix | |
import torch | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
from datapipe.datasets import create_dataset | |
from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL | |
_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\ | |
'meticulous detailing, hyper sharpness, perfect without deformations' | |
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\ | |
'painting, drawing, sketch, oil painting' | |
class BaseSampler: | |
def __init__(self, configs): | |
''' | |
Input: | |
configs: config, see the yaml file in folder ./configs/ | |
configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps} | |
seed: int, random seed | |
''' | |
self.configs = configs | |
self.setup_seed() | |
self.build_model() | |
def setup_seed(self, seed=None): | |
seed = self.configs.seed if seed is None else seed | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def write_log(self, log_str): | |
print(log_str, flush=True) | |
def build_model(self): | |
# Build Stable diffusion | |
params = dict(self.configs.sd_pipe.params) | |
torch_dtype = params.pop('torch_dtype') | |
params['torch_dtype'] = get_torch_dtype(torch_dtype) | |
base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params) | |
if self.configs.get('scheduler', None) is not None: | |
pipe_id = self.configs.scheduler.target.split('.')[-1] | |
self.write_log(f'Loading scheduler of {pipe_id}...') | |
base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config( | |
base_pipe.scheduler.config | |
) | |
self.write_log('Loaded Done') | |
if self.configs.get('vae_fp16', None) is not None: | |
params_vae = dict(self.configs.vae_fp16.params) | |
torch_dtype = params_vae.pop('torch_dtype') | |
params_vae['torch_dtype'] = get_torch_dtype(torch_dtype) | |
pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path | |
self.write_log(f'Loading improved vae from {pipe_id}...') | |
base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained( | |
**params_vae, | |
) | |
self.write_log('Loaded Done') | |
if self.configs.base_model in ['sd-turbo', 'sd2base'] : | |
sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe) | |
else: | |
raise ValueError(f"Unsupported base model: {self.configs.base_model}!") | |
sd_pipe.to(f"cuda") | |
if self.configs.sliced_vae: | |
sd_pipe.vae.enable_slicing() | |
if self.configs.tiled_vae: | |
sd_pipe.vae.enable_tiling() | |
sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size | |
sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size | |
if self.configs.gradient_checkpointing_vae: | |
self.write_log(f"Activating gradient checkpoing for vae...") | |
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True) | |
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True) | |
model_configs = self.configs.model_start | |
params = model_configs.get('params', dict) | |
model_start = util_common.get_obj_from_str(model_configs.target)(**params) | |
model_start.cuda() | |
ckpt_path = model_configs.get('ckpt_path') | |
assert ckpt_path is not None | |
self.write_log(f"Loading started model from {ckpt_path}...") | |
state = torch.load(ckpt_path, map_location=f"cuda") | |
if 'state_dict' in state: | |
state = state['state_dict'] | |
util_net.reload_model(model_start, state) | |
self.write_log(f"Loading Done") | |
model_start.eval() | |
setattr(sd_pipe, 'start_noise_predictor', model_start) | |
self.sd_pipe = sd_pipe | |
class InvSamplerSR(BaseSampler): | |
def sample_func(self, im_cond): | |
''' | |
Input: | |
im_cond: b x c x h x w, torch tensor, [0,1], RGB | |
Output: | |
xt: h x w x c, numpy array, [0,1], RGB | |
''' | |
if self.configs.cfg_scale > 1.0: | |
negative_prompt = [_negative,]*im_cond.shape[0] | |
else: | |
negative_prompt = None | |
ori_h_lq, ori_w_lq = im_cond.shape[-2:] | |
ori_w_hq = ori_w_lq * self.configs.basesr.sf | |
ori_h_hq = ori_h_lq * self.configs.basesr.sf | |
vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1)) | |
if hasattr(self.sd_pipe, 'unet'): | |
diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1)) | |
else: | |
diffusion_sf = self.sd_pipe.transformer.patch_size | |
mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf | |
idle_pch_size = self.configs.basesr.chopping.pch_size | |
if min(im_cond.shape[-2:]) >= idle_pch_size: | |
pad_h_up = pad_w_left = 0 | |
else: | |
while min(im_cond.shape[-2:]) < idle_pch_size: | |
pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0) | |
pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0) | |
pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0) | |
pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0) | |
im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect') | |
if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size: | |
target_size = ( | |
im_cond.shape[-2] * self.configs.basesr.sf, | |
im_cond.shape[-1] * self.configs.basesr.sf | |
) | |
res_sr = self.sd_pipe( | |
image=im_cond.type(torch.float16), | |
prompt=[_positive, ]*im_cond.shape[0], | |
negative_prompt=negative_prompt, | |
target_size=target_size, | |
timesteps=self.configs.timesteps, | |
guidance_scale=self.configs.cfg_scale, | |
output_type="pt", # torch tensor, b x c x h x w, [0, 1] | |
).images | |
else: | |
if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0): | |
target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq | |
target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq | |
pad_h = target_h_lq - im_cond.shape[-2] | |
pad_w = target_w_lq - im_cond.shape[-1] | |
im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect') | |
im_spliter = util_image.ImageSpliterTh( | |
im_cond, | |
pch_size=idle_pch_size, | |
stride= int(idle_pch_size * 0.50), | |
sf=self.configs.basesr.sf, | |
weight_type=self.configs.basesr.chopping.weight_type, | |
extra_bs=1 if self.configs.bs > 1 else self.configs.bs, | |
) | |
for im_lq_pch, index_infos in im_spliter: | |
target_size = ( | |
im_lq_pch.shape[-2] * self.configs.basesr.sf, | |
im_lq_pch.shape[-1] * self.configs.basesr.sf, | |
) | |
# start = torch.cuda.Event(enable_timing=True) | |
# end = torch.cuda.Event(enable_timing=True) | |
# start.record() | |
res_sr_pch = self.sd_pipe( | |
image=im_lq_pch.type(torch.float16), | |
prompt=[_positive, ]*im_lq_pch.shape[0], | |
negative_prompt=negative_prompt, | |
target_size=target_size, | |
timesteps=self.configs.timesteps, | |
guidance_scale=self.configs.cfg_scale, | |
output_type="pt", # torch tensor, b x c x h x w, [0, 1] | |
).images | |
# end.record() | |
# torch.cuda.synchronize() | |
# print(f"Time: {start.elapsed_time(end):.6f}") | |
im_spliter.update(res_sr_pch, index_infos) | |
res_sr = im_spliter.gather() | |
pad_h_up *= self.configs.basesr.sf | |
pad_w_left *= self.configs.basesr.sf | |
res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left] | |
if self.configs.color_fix: | |
im_cond_up = F.interpolate( | |
im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True | |
) | |
if self.configs.color_fix == 'ycbcr': | |
res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up) | |
elif self.configs.color_fix == 'wavelet': | |
res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up) | |
else: | |
raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}") | |
res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy() | |
return res_sr | |
def inference(self, in_path, out_path, bs=1): | |
''' | |
Inference demo. | |
Input: | |
in_path: str, folder or image path for LQ image | |
out_path: str, folder save the results | |
bs: int, default bs=1, bs % num_gpus == 0 | |
''' | |
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path | |
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path | |
if not out_path.exists(): | |
out_path.mkdir(parents=True) | |
if in_path.is_dir(): | |
data_config = {'type': 'base', | |
'params': {'dir_path': str(in_path), | |
'transform_type': 'default', | |
'transform_kwargs': { | |
'mean': 0.0, | |
'std': 1.0, | |
}, | |
'need_path': True, | |
'recursive': False, | |
'length': None, | |
} | |
} | |
dataset = create_dataset(data_config) | |
self.write_log(f'Find {len(dataset)} images in {in_path}') | |
dataloader = torch.utils.data.DataLoader( | |
dataset, batch_size=bs, shuffle=False, drop_last=False, | |
) | |
for data in dataloader: | |
res = self.sample_func(data['lq'].cuda()) | |
for jj in range(res.shape[0]): | |
im_name = Path(data['path'][jj]).stem | |
save_path = str(out_path / f"{im_name}.png") | |
util_image.imwrite(res[jj], save_path, dtype_in='float32') | |
else: | |
im_cond = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c | |
im_cond = util_image.img2tensor(im_cond).cuda() # 1 x c x h x w | |
image = self.sample_func(im_cond).squeeze(0) | |
save_path = str(out_path / f"{in_path.stem}.png") | |
util_image.imwrite(image, save_path, dtype_in='float32') | |
self.write_log(f"Processing done, enjoy the results in {str(out_path)}") | |
if __name__ == '__main__': | |
pass | |