Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import Callable, Dict, List, Optional, Union | |
import torch | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..utils import ( | |
USE_PEFT_BACKEND, | |
convert_state_dict_to_diffusers, | |
convert_state_dict_to_peft, | |
convert_unet_state_dict_to_peft, | |
deprecate, | |
get_adapter_name, | |
get_peft_kwargs, | |
is_peft_version, | |
is_transformers_available, | |
logging, | |
scale_lora_layers, | |
) | |
from .lora_base import LoraBaseMixin | |
from .lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers | |
if is_transformers_available(): | |
from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules | |
logger = logging.get_logger(__name__) | |
TEXT_ENCODER_NAME = "text_encoder" | |
UNET_NAME = "unet" | |
TRANSFORMER_NAME = "transformer" | |
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" | |
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" | |
class StableDiffusionLoraLoaderMixin(LoraBaseMixin): | |
r""" | |
Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and | |
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
""" | |
_lora_loadable_modules = ["unet", "text_encoder"] | |
unet_name = UNET_NAME | |
text_encoder_name = TEXT_ENCODER_NAME | |
def load_lora_weights( | |
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
): | |
""" | |
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
`self.text_encoder`. | |
All kwargs are forwarded to `self.lora_state_dict`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
loaded. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | |
loaded into `self.unet`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | |
dict is loaded into `self.text_encoder`. | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
kwargs (`dict`, *optional*): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# if a dict is passed, copy it instead of modifying it inplace | |
if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
# First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
if not is_correct_format: | |
raise ValueError("Invalid LoRA checkpoint.") | |
self.load_lora_into_unet( | |
state_dict, | |
network_alphas=network_alphas, | |
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
self.load_lora_into_text_encoder( | |
state_dict, | |
network_alphas=network_alphas, | |
text_encoder=getattr(self, self.text_encoder_name) | |
if not hasattr(self, "text_encoder") | |
else self.text_encoder, | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
def lora_state_dict( | |
cls, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
r""" | |
Return state dict for lora weights and the network alphas. | |
<Tip warning={true}> | |
We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
This function is experimental and might change in the future. | |
</Tip> | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
weight_name (`str`, *optional*, defaults to None): | |
Name of the serialized state dict file. | |
""" | |
# Load the main state dict first which has the LoRA layers for either of | |
# UNet and text encoder or both. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
weight_name = kwargs.pop("weight_name", None) | |
unet_config = kwargs.pop("unet_config", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
state_dict = cls._fetch_state_dict( | |
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
weight_name=weight_name, | |
use_safetensors=use_safetensors, | |
local_files_only=local_files_only, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
allow_pickle=allow_pickle, | |
) | |
network_alphas = None | |
# TODO: replace it with a method from `state_dict_utils` | |
if all( | |
( | |
k.startswith("lora_te_") | |
or k.startswith("lora_unet_") | |
or k.startswith("lora_te1_") | |
or k.startswith("lora_te2_") | |
) | |
for k in state_dict.keys() | |
): | |
# Map SDXL blocks correctly. | |
if unet_config is not None: | |
# use unet config to remap block numbers | |
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | |
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | |
return state_dict, network_alphas | |
def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `unet`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
network_alphas (`Dict[str, float]`): | |
The value of the network alpha used for stable learning and preventing underflow. This value has the | |
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
unet (`UNet2DConditionModel`): | |
The UNet model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | |
if not only_text_encoder: | |
# Load the layers corresponding to UNet. | |
logger.info(f"Loading {cls.unet_name}.") | |
unet.load_attn_procs( | |
state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline | |
) | |
def load_lora_into_text_encoder( | |
cls, | |
state_dict, | |
network_alphas, | |
text_encoder, | |
prefix=None, | |
lora_scale=1.0, | |
adapter_name=None, | |
_pipeline=None, | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
additional `text_encoder` to distinguish between unet lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
text_encoder (`CLIPTextModel`): | |
The text encoder model to load the LoRA layers into. | |
prefix (`str`): | |
Expected prefix of the `text_encoder` in the `state_dict`. | |
lora_scale (`float`): | |
How much to scale the output of the lora linear layer before it is added with the output of the regular | |
lora layer. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
prefix = cls.text_encoder_name if prefix is None else prefix | |
# Safe prefix to check with. | |
if any(cls.text_encoder_name in key for key in keys): | |
# Load the layers corresponding to text encoder and make necessary adjustments. | |
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] | |
text_encoder_lora_state_dict = { | |
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
} | |
if len(text_encoder_lora_state_dict) > 0: | |
logger.info(f"Loading {prefix}.") | |
rank = {} | |
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) | |
# convert state dict | |
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) | |
for name, _ in text_encoder_attn_modules(text_encoder): | |
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
for name, _ in text_encoder_mlp_modules(text_encoder): | |
for module in ("fc1", "fc2"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
if network_alphas is not None: | |
alpha_keys = [ | |
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"]: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
if is_peft_version("<", "0.9.0"): | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(text_encoder) | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
# inject LoRA layers and load the state dict | |
# in transformers we automatically check whether the adapter name is already in use or not | |
text_encoder.load_adapter( | |
adapter_name=adapter_name, | |
adapter_state_dict=text_encoder_lora_state_dict, | |
peft_config=lora_config, | |
) | |
# scale LoRA layers with `lora_scale` | |
scale_lora_layers(text_encoder, weight=lora_scale) | |
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
def save_lora_weights( | |
cls, | |
save_directory: Union[str, os.PathLike], | |
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
r""" | |
Save the LoRA parameters corresponding to the UNet and text encoder. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `unet`. | |
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
""" | |
state_dict = {} | |
if not (unet_lora_layers or text_encoder_lora_layers): | |
raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.") | |
if unet_lora_layers: | |
state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) | |
if text_encoder_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
# Save the model | |
cls.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
def fuse_lora( | |
self, | |
components: List[str] = ["unet", "text_encoder"], | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
adapter_names: Optional[List[str]] = None, | |
**kwargs, | |
): | |
r""" | |
Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]`, *optional*): | |
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
Example: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
).to("cuda") | |
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipeline.fuse_lora(lora_scale=0.7) | |
``` | |
""" | |
super().fuse_lora( | |
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
) | |
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs): | |
r""" | |
Reverses the effect of | |
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
unfuse_text_encoder (`bool`, defaults to `True`): | |
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
LoRA parameters then it won't have any effect. | |
""" | |
super().unfuse_lora(components=components) | |
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): | |
r""" | |
Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`], | |
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | |
[`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | |
""" | |
_lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"] | |
unet_name = UNET_NAME | |
text_encoder_name = TEXT_ENCODER_NAME | |
def load_lora_weights( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
adapter_name: Optional[str] = None, | |
**kwargs, | |
): | |
""" | |
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
`self.text_encoder`. | |
All kwargs are forwarded to `self.lora_state_dict`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
loaded. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | |
loaded into `self.unet`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | |
dict is loaded into `self.text_encoder`. | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
kwargs (`dict`, *optional*): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# We could have accessed the unet config from `lora_state_dict()` too. We pass | |
# it here explicitly to be able to tell that it's coming from an SDXL | |
# pipeline. | |
# if a dict is passed, copy it instead of modifying it inplace | |
if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
# First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
state_dict, network_alphas = self.lora_state_dict( | |
pretrained_model_name_or_path_or_dict, | |
unet_config=self.unet.config, | |
**kwargs, | |
) | |
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
if not is_correct_format: | |
raise ValueError("Invalid LoRA checkpoint.") | |
self.load_lora_into_unet( | |
state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self | |
) | |
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
if len(text_encoder_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder, | |
prefix="text_encoder", | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | |
if len(text_encoder_2_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_2_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder_2, | |
prefix="text_encoder_2", | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict | |
def lora_state_dict( | |
cls, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
r""" | |
Return state dict for lora weights and the network alphas. | |
<Tip warning={true}> | |
We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
This function is experimental and might change in the future. | |
</Tip> | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
weight_name (`str`, *optional*, defaults to None): | |
Name of the serialized state dict file. | |
""" | |
# Load the main state dict first which has the LoRA layers for either of | |
# UNet and text encoder or both. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
weight_name = kwargs.pop("weight_name", None) | |
unet_config = kwargs.pop("unet_config", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
state_dict = cls._fetch_state_dict( | |
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
weight_name=weight_name, | |
use_safetensors=use_safetensors, | |
local_files_only=local_files_only, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
allow_pickle=allow_pickle, | |
) | |
network_alphas = None | |
# TODO: replace it with a method from `state_dict_utils` | |
if all( | |
( | |
k.startswith("lora_te_") | |
or k.startswith("lora_unet_") | |
or k.startswith("lora_te1_") | |
or k.startswith("lora_te2_") | |
) | |
for k in state_dict.keys() | |
): | |
# Map SDXL blocks correctly. | |
if unet_config is not None: | |
# use unet config to remap block numbers | |
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | |
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | |
return state_dict, network_alphas | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet | |
def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `unet`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
network_alphas (`Dict[str, float]`): | |
The value of the network alpha used for stable learning and preventing underflow. This value has the | |
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
unet (`UNet2DConditionModel`): | |
The UNet model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | |
if not only_text_encoder: | |
# Load the layers corresponding to UNet. | |
logger.info(f"Loading {cls.unet_name}.") | |
unet.load_attn_procs( | |
state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline | |
) | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
def load_lora_into_text_encoder( | |
cls, | |
state_dict, | |
network_alphas, | |
text_encoder, | |
prefix=None, | |
lora_scale=1.0, | |
adapter_name=None, | |
_pipeline=None, | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
additional `text_encoder` to distinguish between unet lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
text_encoder (`CLIPTextModel`): | |
The text encoder model to load the LoRA layers into. | |
prefix (`str`): | |
Expected prefix of the `text_encoder` in the `state_dict`. | |
lora_scale (`float`): | |
How much to scale the output of the lora linear layer before it is added with the output of the regular | |
lora layer. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
prefix = cls.text_encoder_name if prefix is None else prefix | |
# Safe prefix to check with. | |
if any(cls.text_encoder_name in key for key in keys): | |
# Load the layers corresponding to text encoder and make necessary adjustments. | |
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] | |
text_encoder_lora_state_dict = { | |
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
} | |
if len(text_encoder_lora_state_dict) > 0: | |
logger.info(f"Loading {prefix}.") | |
rank = {} | |
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) | |
# convert state dict | |
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) | |
for name, _ in text_encoder_attn_modules(text_encoder): | |
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
for name, _ in text_encoder_mlp_modules(text_encoder): | |
for module in ("fc1", "fc2"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
if network_alphas is not None: | |
alpha_keys = [ | |
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"]: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
if is_peft_version("<", "0.9.0"): | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(text_encoder) | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
# inject LoRA layers and load the state dict | |
# in transformers we automatically check whether the adapter name is already in use or not | |
text_encoder.load_adapter( | |
adapter_name=adapter_name, | |
adapter_state_dict=text_encoder_lora_state_dict, | |
peft_config=lora_config, | |
) | |
# scale LoRA layers with `lora_scale` | |
scale_lora_layers(text_encoder, weight=lora_scale) | |
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
def save_lora_weights( | |
cls, | |
save_directory: Union[str, os.PathLike], | |
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
r""" | |
Save the LoRA parameters corresponding to the UNet and text encoder. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `unet`. | |
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
""" | |
state_dict = {} | |
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | |
raise ValueError( | |
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." | |
) | |
if unet_lora_layers: | |
state_dict.update(cls.pack_weights(unet_lora_layers, "unet")) | |
if text_encoder_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | |
if text_encoder_2_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | |
cls.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
def fuse_lora( | |
self, | |
components: List[str] = ["unet", "text_encoder", "text_encoder_2"], | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
adapter_names: Optional[List[str]] = None, | |
**kwargs, | |
): | |
r""" | |
Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]`, *optional*): | |
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
Example: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
).to("cuda") | |
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipeline.fuse_lora(lora_scale=0.7) | |
``` | |
""" | |
super().fuse_lora( | |
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
) | |
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs): | |
r""" | |
Reverses the effect of | |
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
unfuse_text_encoder (`bool`, defaults to `True`): | |
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
LoRA parameters then it won't have any effect. | |
""" | |
super().unfuse_lora(components=components) | |
class SD3LoraLoaderMixin(LoraBaseMixin): | |
r""" | |
Load LoRA layers into [`SD3Transformer2DModel`], | |
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | |
[`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | |
Specific to [`StableDiffusion3Pipeline`]. | |
""" | |
_lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"] | |
transformer_name = TRANSFORMER_NAME | |
text_encoder_name = TEXT_ENCODER_NAME | |
def lora_state_dict( | |
cls, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
r""" | |
Return state dict for lora weights and the network alphas. | |
<Tip warning={true}> | |
We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
This function is experimental and might change in the future. | |
</Tip> | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
""" | |
# Load the main state dict first which has the LoRA layers for either of | |
# transformer and text encoder or both. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
weight_name = kwargs.pop("weight_name", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
state_dict = cls._fetch_state_dict( | |
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
weight_name=weight_name, | |
use_safetensors=use_safetensors, | |
local_files_only=local_files_only, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
allow_pickle=allow_pickle, | |
) | |
return state_dict | |
def load_lora_weights( | |
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
): | |
""" | |
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | |
`self.text_encoder`. | |
All kwargs are forwarded to `self.lora_state_dict`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
loaded. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
dict is loaded into `self.transformer`. | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
kwargs (`dict`, *optional*): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# if a dict is passed, copy it instead of modifying it inplace | |
if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
# First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
if not is_correct_format: | |
raise ValueError("Invalid LoRA checkpoint.") | |
self.load_lora_into_transformer( | |
state_dict, | |
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
if len(text_encoder_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_state_dict, | |
network_alphas=None, | |
text_encoder=self.text_encoder, | |
prefix="text_encoder", | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | |
if len(text_encoder_2_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_2_state_dict, | |
network_alphas=None, | |
text_encoder=self.text_encoder_2, | |
prefix="text_encoder_2", | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
def load_lora_into_transformer(cls, state_dict, transformer, adapter_name=None, _pipeline=None): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `transformer`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
transformer (`SD3Transformer2DModel`): | |
The Transformer model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
keys = list(state_dict.keys()) | |
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
state_dict = { | |
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys | |
} | |
if len(state_dict.keys()) > 0: | |
# check with first key if is not in peft format | |
first_key = next(iter(state_dict.keys())) | |
if "lora_A" not in first_key: | |
state_dict = convert_unet_state_dict_to_peft(state_dict) | |
if adapter_name in getattr(transformer, "peft_config", {}): | |
raise ValueError( | |
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
) | |
rank = {} | |
for key, val in state_dict.items(): | |
if "lora_B" in key: | |
rank[key] = val.shape[1] | |
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(transformer) | |
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
# otherwise loading LoRA weights will lead to an error | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) | |
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
def load_lora_into_text_encoder( | |
cls, | |
state_dict, | |
network_alphas, | |
text_encoder, | |
prefix=None, | |
lora_scale=1.0, | |
adapter_name=None, | |
_pipeline=None, | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
additional `text_encoder` to distinguish between unet lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
text_encoder (`CLIPTextModel`): | |
The text encoder model to load the LoRA layers into. | |
prefix (`str`): | |
Expected prefix of the `text_encoder` in the `state_dict`. | |
lora_scale (`float`): | |
How much to scale the output of the lora linear layer before it is added with the output of the regular | |
lora layer. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
prefix = cls.text_encoder_name if prefix is None else prefix | |
# Safe prefix to check with. | |
if any(cls.text_encoder_name in key for key in keys): | |
# Load the layers corresponding to text encoder and make necessary adjustments. | |
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] | |
text_encoder_lora_state_dict = { | |
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
} | |
if len(text_encoder_lora_state_dict) > 0: | |
logger.info(f"Loading {prefix}.") | |
rank = {} | |
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) | |
# convert state dict | |
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) | |
for name, _ in text_encoder_attn_modules(text_encoder): | |
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
for name, _ in text_encoder_mlp_modules(text_encoder): | |
for module in ("fc1", "fc2"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
if network_alphas is not None: | |
alpha_keys = [ | |
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"]: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
if is_peft_version("<", "0.9.0"): | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(text_encoder) | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
# inject LoRA layers and load the state dict | |
# in transformers we automatically check whether the adapter name is already in use or not | |
text_encoder.load_adapter( | |
adapter_name=adapter_name, | |
adapter_state_dict=text_encoder_lora_state_dict, | |
peft_config=lora_config, | |
) | |
# scale LoRA layers with `lora_scale` | |
scale_lora_layers(text_encoder, weight=lora_scale) | |
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
def save_lora_weights( | |
cls, | |
save_directory: Union[str, os.PathLike], | |
transformer_lora_layers: Dict[str, torch.nn.Module] = None, | |
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
r""" | |
Save the LoRA parameters corresponding to the UNet and text encoder. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `transformer`. | |
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
""" | |
state_dict = {} | |
if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | |
raise ValueError( | |
"You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`." | |
) | |
if transformer_lora_layers: | |
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
if text_encoder_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | |
if text_encoder_2_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | |
# Save the model | |
cls.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
def fuse_lora( | |
self, | |
components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
adapter_names: Optional[List[str]] = None, | |
**kwargs, | |
): | |
r""" | |
Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]`, *optional*): | |
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
Example: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
).to("cuda") | |
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipeline.fuse_lora(lora_scale=0.7) | |
``` | |
""" | |
super().fuse_lora( | |
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
) | |
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs): | |
r""" | |
Reverses the effect of | |
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | |
unfuse_text_encoder (`bool`, defaults to `True`): | |
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | |
LoRA parameters then it won't have any effect. | |
""" | |
super().unfuse_lora(components=components) | |
class FluxLoraLoaderMixin(LoraBaseMixin): | |
r""" | |
Load LoRA layers into [`FluxTransformer2DModel`], | |
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
Specific to [`StableDiffusion3Pipeline`]. | |
""" | |
_lora_loadable_modules = ["transformer", "text_encoder"] | |
transformer_name = TRANSFORMER_NAME | |
text_encoder_name = TEXT_ENCODER_NAME | |
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict | |
def lora_state_dict( | |
cls, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
r""" | |
Return state dict for lora weights and the network alphas. | |
<Tip warning={true}> | |
We support loading A1111 formatted LoRA checkpoints in a limited capacity. | |
This function is experimental and might change in the future. | |
</Tip> | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
""" | |
# Load the main state dict first which has the LoRA layers for either of | |
# transformer and text encoder or both. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
weight_name = kwargs.pop("weight_name", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
state_dict = cls._fetch_state_dict( | |
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | |
weight_name=weight_name, | |
use_safetensors=use_safetensors, | |
local_files_only=local_files_only, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
allow_pickle=allow_pickle, | |
) | |
return state_dict | |
def load_lora_weights( | |
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | |
): | |
""" | |
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | |
`self.text_encoder`. | |
All kwargs are forwarded to `self.lora_state_dict`. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | |
loaded. | |
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | |
dict is loaded into `self.transformer`. | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
kwargs (`dict`, *optional*): | |
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
# if a dict is passed, copy it instead of modifying it inplace | |
if isinstance(pretrained_model_name_or_path_or_dict, dict): | |
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | |
# First, ensure that the checkpoint is a compatible one and can be successfully loaded. | |
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | |
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
if not is_correct_format: | |
raise ValueError("Invalid LoRA checkpoint.") | |
self.load_lora_into_transformer( | |
state_dict, | |
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
if len(text_encoder_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_state_dict, | |
network_alphas=None, | |
text_encoder=self.text_encoder, | |
prefix="text_encoder", | |
lora_scale=self.lora_scale, | |
adapter_name=adapter_name, | |
_pipeline=self, | |
) | |
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer | |
def load_lora_into_transformer(cls, state_dict, transformer, adapter_name=None, _pipeline=None): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `transformer`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
transformer (`SD3Transformer2DModel`): | |
The Transformer model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
keys = list(state_dict.keys()) | |
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
state_dict = { | |
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys | |
} | |
if len(state_dict.keys()) > 0: | |
# check with first key if is not in peft format | |
first_key = next(iter(state_dict.keys())) | |
if "lora_A" not in first_key: | |
state_dict = convert_unet_state_dict_to_peft(state_dict) | |
if adapter_name in getattr(transformer, "peft_config", {}): | |
raise ValueError( | |
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
) | |
rank = {} | |
for key, val in state_dict.items(): | |
if "lora_B" in key: | |
rank[key] = val.shape[1] | |
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(transformer) | |
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
# otherwise loading LoRA weights will lead to an error | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) | |
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
def load_lora_into_text_encoder( | |
cls, | |
state_dict, | |
network_alphas, | |
text_encoder, | |
prefix=None, | |
lora_scale=1.0, | |
adapter_name=None, | |
_pipeline=None, | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
additional `text_encoder` to distinguish between unet lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
text_encoder (`CLIPTextModel`): | |
The text encoder model to load the LoRA layers into. | |
prefix (`str`): | |
Expected prefix of the `text_encoder` in the `state_dict`. | |
lora_scale (`float`): | |
How much to scale the output of the lora linear layer before it is added with the output of the regular | |
lora layer. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
prefix = cls.text_encoder_name if prefix is None else prefix | |
# Safe prefix to check with. | |
if any(cls.text_encoder_name in key for key in keys): | |
# Load the layers corresponding to text encoder and make necessary adjustments. | |
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] | |
text_encoder_lora_state_dict = { | |
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
} | |
if len(text_encoder_lora_state_dict) > 0: | |
logger.info(f"Loading {prefix}.") | |
rank = {} | |
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) | |
# convert state dict | |
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) | |
for name, _ in text_encoder_attn_modules(text_encoder): | |
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
for name, _ in text_encoder_mlp_modules(text_encoder): | |
for module in ("fc1", "fc2"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
if network_alphas is not None: | |
alpha_keys = [ | |
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"]: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
if is_peft_version("<", "0.9.0"): | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(text_encoder) | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
# inject LoRA layers and load the state dict | |
# in transformers we automatically check whether the adapter name is already in use or not | |
text_encoder.load_adapter( | |
adapter_name=adapter_name, | |
adapter_state_dict=text_encoder_lora_state_dict, | |
peft_config=lora_config, | |
) | |
# scale LoRA layers with `lora_scale` | |
scale_lora_layers(text_encoder, weight=lora_scale) | |
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer | |
def save_lora_weights( | |
cls, | |
save_directory: Union[str, os.PathLike], | |
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
r""" | |
Save the LoRA parameters corresponding to the UNet and text encoder. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `transformer`. | |
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
""" | |
state_dict = {} | |
if not (transformer_lora_layers or text_encoder_lora_layers): | |
raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.") | |
if transformer_lora_layers: | |
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
if text_encoder_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
# Save the model | |
cls.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer | |
def fuse_lora( | |
self, | |
components: List[str] = ["transformer", "text_encoder"], | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
adapter_names: Optional[List[str]] = None, | |
**kwargs, | |
): | |
r""" | |
Fuses the LoRA parameters into the original parameters of the corresponding blocks. | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | |
lora_scale (`float`, defaults to 1.0): | |
Controls how much to influence the outputs with the LoRA parameters. | |
safe_fusing (`bool`, defaults to `False`): | |
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | |
adapter_names (`List[str]`, *optional*): | |
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | |
Example: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipeline = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
).to("cuda") | |
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipeline.fuse_lora(lora_scale=0.7) | |
``` | |
""" | |
super().fuse_lora( | |
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | |
) | |
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): | |
r""" | |
Reverses the effect of | |
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | |
<Tip warning={true}> | |
This is an experimental API. | |
</Tip> | |
Args: | |
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | |
""" | |
super().unfuse_lora(components=components) | |
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially | |
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support. | |
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin): | |
_lora_loadable_modules = ["transformer", "text_encoder"] | |
transformer_name = TRANSFORMER_NAME | |
text_encoder_name = TEXT_ENCODER_NAME | |
def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `transformer`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
unet (`UNet2DConditionModel`): | |
The UNet model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
keys = list(state_dict.keys()) | |
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
state_dict = { | |
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys | |
} | |
if network_alphas is not None: | |
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)] | |
network_alphas = { | |
k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
if len(state_dict.keys()) > 0: | |
if adapter_name in getattr(transformer, "peft_config", {}): | |
raise ValueError( | |
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
) | |
rank = {} | |
for key, val in state_dict.items(): | |
if "lora_B" in key: | |
rank[key] = val.shape[1] | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(transformer) | |
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
# otherwise loading LoRA weights will lead to an error | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) | |
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder | |
def load_lora_into_text_encoder( | |
cls, | |
state_dict, | |
network_alphas, | |
text_encoder, | |
prefix=None, | |
lora_scale=1.0, | |
adapter_name=None, | |
_pipeline=None, | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `text_encoder` | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The key should be prefixed with an | |
additional `text_encoder` to distinguish between unet lora layers. | |
network_alphas (`Dict[str, float]`): | |
See `LoRALinearLayer` for more details. | |
text_encoder (`CLIPTextModel`): | |
The text encoder model to load the LoRA layers into. | |
prefix (`str`): | |
Expected prefix of the `text_encoder` in the `state_dict`. | |
lora_scale (`float`): | |
How much to scale the output of the lora linear layer before it is added with the output of the regular | |
lora layer. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
if not USE_PEFT_BACKEND: | |
raise ValueError("PEFT backend is required for this method.") | |
from peft import LoraConfig | |
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
# their prefixes. | |
keys = list(state_dict.keys()) | |
prefix = cls.text_encoder_name if prefix is None else prefix | |
# Safe prefix to check with. | |
if any(cls.text_encoder_name in key for key in keys): | |
# Load the layers corresponding to text encoder and make necessary adjustments. | |
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] | |
text_encoder_lora_state_dict = { | |
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
} | |
if len(text_encoder_lora_state_dict) > 0: | |
logger.info(f"Loading {prefix}.") | |
rank = {} | |
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) | |
# convert state dict | |
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) | |
for name, _ in text_encoder_attn_modules(text_encoder): | |
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
for name, _ in text_encoder_mlp_modules(text_encoder): | |
for module in ("fc1", "fc2"): | |
rank_key = f"{name}.{module}.lora_B.weight" | |
if rank_key not in text_encoder_lora_state_dict: | |
continue | |
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] | |
if network_alphas is not None: | |
alpha_keys = [ | |
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"]: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
if is_peft_version("<", "0.9.0"): | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(text_encoder) | |
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
# inject LoRA layers and load the state dict | |
# in transformers we automatically check whether the adapter name is already in use or not | |
text_encoder.load_adapter( | |
adapter_name=adapter_name, | |
adapter_state_dict=text_encoder_lora_state_dict, | |
peft_config=lora_config, | |
) | |
# scale LoRA layers with `lora_scale` | |
scale_lora_layers(text_encoder, weight=lora_scale) | |
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() | |
# Unsafe code /> | |
def save_lora_weights( | |
cls, | |
save_directory: Union[str, os.PathLike], | |
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
transformer_lora_layers: Dict[str, torch.nn.Module] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
r""" | |
Save the LoRA parameters corresponding to the UNet and text encoder. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `unet`. | |
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
encoder LoRA state dict because it comes from 🤗 Transformers. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
""" | |
state_dict = {} | |
if not (transformer_lora_layers or text_encoder_lora_layers): | |
raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.") | |
if transformer_lora_layers: | |
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | |
if text_encoder_lora_layers: | |
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | |
# Save the model | |
cls.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin): | |
def __init__(self, *args, **kwargs): | |
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead." | |
deprecate("LoraLoaderMixin", "1.0.0", deprecation_message) | |
super().__init__(*args, **kwargs) | |