Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import inspect | |
import re | |
from contextlib import nullcontext | |
from typing import Optional | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..utils import deprecate, is_accelerate_available, logging | |
from .single_file_utils import ( | |
SingleFileComponentError, | |
convert_animatediff_checkpoint_to_diffusers, | |
convert_controlnet_checkpoint, | |
convert_flux_transformer_checkpoint_to_diffusers, | |
convert_ldm_unet_checkpoint, | |
convert_ldm_vae_checkpoint, | |
convert_sd3_transformer_checkpoint_to_diffusers, | |
convert_stable_cascade_unet_single_file_to_diffusers, | |
create_controlnet_diffusers_config_from_ldm, | |
create_unet_diffusers_config_from_ldm, | |
create_vae_diffusers_config_from_ldm, | |
fetch_diffusers_config, | |
fetch_original_config, | |
load_single_file_checkpoint, | |
) | |
logger = logging.get_logger(__name__) | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
from ..models.modeling_utils import load_model_dict_into_meta | |
SINGLE_FILE_LOADABLE_CLASSES = { | |
"StableCascadeUNet": { | |
"checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers, | |
}, | |
"UNet2DConditionModel": { | |
"checkpoint_mapping_fn": convert_ldm_unet_checkpoint, | |
"config_mapping_fn": create_unet_diffusers_config_from_ldm, | |
"default_subfolder": "unet", | |
"legacy_kwargs": { | |
"num_in_channels": "in_channels", # Legacy kwargs supported by `from_single_file` mapped to new args | |
}, | |
}, | |
"AutoencoderKL": { | |
"checkpoint_mapping_fn": convert_ldm_vae_checkpoint, | |
"config_mapping_fn": create_vae_diffusers_config_from_ldm, | |
"default_subfolder": "vae", | |
}, | |
"ControlNetModel": { | |
"checkpoint_mapping_fn": convert_controlnet_checkpoint, | |
"config_mapping_fn": create_controlnet_diffusers_config_from_ldm, | |
}, | |
"SD3Transformer2DModel": { | |
"checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers, | |
"default_subfolder": "transformer", | |
}, | |
"MotionAdapter": { | |
"checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers, | |
}, | |
"SparseControlNetModel": { | |
"checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers, | |
}, | |
"FluxTransformer2DModel": { | |
"checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers, | |
"default_subfolder": "transformer", | |
}, | |
} | |
def _get_single_file_loadable_mapping_class(cls): | |
diffusers_module = importlib.import_module(__name__.split(".")[0]) | |
for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES: | |
loadable_class = getattr(diffusers_module, loadable_class_str) | |
if issubclass(cls, loadable_class): | |
return loadable_class_str | |
return None | |
def _get_mapping_function_kwargs(mapping_fn, **kwargs): | |
parameters = inspect.signature(mapping_fn).parameters | |
mapping_kwargs = {} | |
for parameter in parameters: | |
if parameter in kwargs: | |
mapping_kwargs[parameter] = kwargs[parameter] | |
return mapping_kwargs | |
class FromOriginalModelMixin: | |
""" | |
Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model. | |
""" | |
def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs): | |
r""" | |
Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model | |
is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path_or_dict (`str`, *optional*): | |
Can be either: | |
- A link to the `.safetensors` or `.ckpt` file (for example | |
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub. | |
- A path to a local *file* containing the weights of the component model. | |
- A state dict containing the component model weights. | |
config (`str`, *optional*): | |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted | |
on the Hub. | |
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component | |
configs in Diffusers format. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
original_config (`str`, *optional*): | |
Dict or path to a yaml file containing the configuration for the model in its original format. | |
If a dict is provided, it will be used to initialize the model configuration. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to True, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (for example the pipeline components of the | |
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` | |
method. See example below for more information. | |
```py | |
>>> from diffusers import StableCascadeUNet | |
>>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors" | |
>>> model = StableCascadeUNet.from_single_file(ckpt_path) | |
``` | |
""" | |
mapping_class_name = _get_single_file_loadable_mapping_class(cls) | |
# if class_name not in SINGLE_FILE_LOADABLE_CLASSES: | |
if mapping_class_name is None: | |
raise ValueError( | |
f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}" | |
) | |
pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None) | |
if pretrained_model_link_or_path is not None: | |
deprecation_message = ( | |
"Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes" | |
) | |
deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message) | |
pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path | |
config = kwargs.pop("config", None) | |
original_config = kwargs.pop("original_config", None) | |
if config is not None and original_config is not None: | |
raise ValueError( | |
"`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments" | |
) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
subfolder = kwargs.pop("subfolder", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
if isinstance(pretrained_model_link_or_path_or_dict, dict): | |
checkpoint = pretrained_model_link_or_path_or_dict | |
else: | |
checkpoint = load_single_file_checkpoint( | |
pretrained_model_link_or_path_or_dict, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
cache_dir=cache_dir, | |
local_files_only=local_files_only, | |
revision=revision, | |
) | |
mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name] | |
checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"] | |
if original_config: | |
if "config_mapping_fn" in mapping_functions: | |
config_mapping_fn = mapping_functions["config_mapping_fn"] | |
else: | |
config_mapping_fn = None | |
if config_mapping_fn is None: | |
raise ValueError( | |
( | |
f"`original_config` has been provided for {mapping_class_name} but no mapping function" | |
"was found to convert the original config to a Diffusers config in" | |
"`diffusers.loaders.single_file_utils`" | |
) | |
) | |
if isinstance(original_config, str): | |
# If original_config is a URL or filepath fetch the original_config dict | |
original_config = fetch_original_config(original_config, local_files_only=local_files_only) | |
config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs) | |
diffusers_model_config = config_mapping_fn( | |
original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs | |
) | |
else: | |
if config: | |
if isinstance(config, str): | |
default_pretrained_model_config_name = config | |
else: | |
raise ValueError( | |
( | |
"Invalid `config` argument. Please provide a string representing a repo id" | |
"or path to a local Diffusers model repo." | |
) | |
) | |
else: | |
config = fetch_diffusers_config(checkpoint) | |
default_pretrained_model_config_name = config["pretrained_model_name_or_path"] | |
if "default_subfolder" in mapping_functions: | |
subfolder = mapping_functions["default_subfolder"] | |
subfolder = subfolder or config.pop( | |
"subfolder", None | |
) # some configs contain a subfolder key, e.g. StableCascadeUNet | |
diffusers_model_config = cls.load_config( | |
pretrained_model_name_or_path=default_pretrained_model_config_name, | |
subfolder=subfolder, | |
local_files_only=local_files_only, | |
) | |
expected_kwargs, optional_kwargs = cls._get_signature_keys(cls) | |
# Map legacy kwargs to new kwargs | |
if "legacy_kwargs" in mapping_functions: | |
legacy_kwargs = mapping_functions["legacy_kwargs"] | |
for legacy_key, new_key in legacy_kwargs.items(): | |
if legacy_key in kwargs: | |
kwargs[new_key] = kwargs.pop(legacy_key) | |
model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs} | |
diffusers_model_config.update(model_kwargs) | |
checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs) | |
diffusers_format_checkpoint = checkpoint_mapping_fn( | |
config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs | |
) | |
if not diffusers_format_checkpoint: | |
raise SingleFileComponentError( | |
f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint." | |
) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
model = cls.from_config(diffusers_model_config) | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) | |
else: | |
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) | |
if model._keys_to_ignore_on_load_unexpected is not None: | |
for pat in model._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
if torch_dtype is not None: | |
model.to(torch_dtype) | |
model.eval() | |
return model | |