Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Conversion script for the Stable Diffusion checkpoints.""" | |
import os | |
import re | |
from contextlib import nullcontext | |
from io import BytesIO | |
from urllib.parse import urlparse | |
import requests | |
import torch | |
import yaml | |
from ..models.modeling_utils import load_state_dict | |
from ..schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EDMDPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from ..utils import ( | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
deprecate, | |
is_accelerate_available, | |
is_transformers_available, | |
logging, | |
) | |
from ..utils.hub_utils import _get_model_file | |
if is_transformers_available(): | |
from transformers import AutoImageProcessor | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
from ..models.modeling_utils import load_model_dict_into_meta | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
CHECKPOINT_KEY_NAMES = { | |
"v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight", | |
"xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias", | |
"xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias", | |
"upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias", | |
"controlnet": "control_model.time_embed.0.weight", | |
"playground-v2-5": "edm_mean", | |
"inpainting": "model.diffusion_model.input_blocks.0.0.weight", | |
"clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight", | |
"clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight", | |
"clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight", | |
"open_clip": "cond_stage_model.model.token_embedding.weight", | |
"open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding", | |
"open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection", | |
"open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight", | |
"stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight", | |
"stable_cascade_stage_c": "clip_txt_mapper.weight", | |
"sd3": "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias", | |
"animatediff": "down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe", | |
"animatediff_v2": "mid_block.motion_modules.0.temporal_transformer.norm.bias", | |
"animatediff_sdxl_beta": "up_blocks.2.motion_modules.0.temporal_transformer.norm.weight", | |
"animatediff_scribble": "controlnet_cond_embedding.conv_in.weight", | |
"animatediff_rgb": "controlnet_cond_embedding.weight", | |
"flux": "double_blocks.0.img_attn.norm.key_norm.scale", | |
} | |
DIFFUSERS_DEFAULT_PIPELINE_PATHS = { | |
"xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"}, | |
"xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"}, | |
"xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"}, | |
"playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"}, | |
"upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"}, | |
"inpainting": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-inpainting"}, | |
"inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"}, | |
"controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"}, | |
"v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"}, | |
"v1": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5"}, | |
"stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"}, | |
"stable_cascade_stage_b_lite": { | |
"pretrained_model_name_or_path": "stabilityai/stable-cascade", | |
"subfolder": "decoder_lite", | |
}, | |
"stable_cascade_stage_c": { | |
"pretrained_model_name_or_path": "stabilityai/stable-cascade-prior", | |
"subfolder": "prior", | |
}, | |
"stable_cascade_stage_c_lite": { | |
"pretrained_model_name_or_path": "stabilityai/stable-cascade-prior", | |
"subfolder": "prior_lite", | |
}, | |
"sd3": { | |
"pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers", | |
}, | |
"animatediff_v1": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5"}, | |
"animatediff_v2": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-2"}, | |
"animatediff_v3": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-3"}, | |
"animatediff_sdxl_beta": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-sdxl-beta"}, | |
"animatediff_scribble": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-scribble"}, | |
"animatediff_rgb": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-rgb"}, | |
"flux-dev": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-dev"}, | |
"flux-schnell": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-schnell"}, | |
} | |
# Use to configure model sample size when original config is provided | |
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = { | |
"xl_base": 1024, | |
"xl_refiner": 1024, | |
"xl_inpaint": 1024, | |
"playground-v2-5": 1024, | |
"upscale": 512, | |
"inpainting": 512, | |
"inpainting_v2": 512, | |
"controlnet": 512, | |
"v2": 768, | |
"v1": 512, | |
} | |
DIFFUSERS_TO_LDM_MAPPING = { | |
"unet": { | |
"layers": { | |
"time_embedding.linear_1.weight": "time_embed.0.weight", | |
"time_embedding.linear_1.bias": "time_embed.0.bias", | |
"time_embedding.linear_2.weight": "time_embed.2.weight", | |
"time_embedding.linear_2.bias": "time_embed.2.bias", | |
"conv_in.weight": "input_blocks.0.0.weight", | |
"conv_in.bias": "input_blocks.0.0.bias", | |
"conv_norm_out.weight": "out.0.weight", | |
"conv_norm_out.bias": "out.0.bias", | |
"conv_out.weight": "out.2.weight", | |
"conv_out.bias": "out.2.bias", | |
}, | |
"class_embed_type": { | |
"class_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"class_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"class_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"class_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
"addition_embed_type": { | |
"add_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"add_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"add_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"add_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
}, | |
"controlnet": { | |
"layers": { | |
"time_embedding.linear_1.weight": "time_embed.0.weight", | |
"time_embedding.linear_1.bias": "time_embed.0.bias", | |
"time_embedding.linear_2.weight": "time_embed.2.weight", | |
"time_embedding.linear_2.bias": "time_embed.2.bias", | |
"conv_in.weight": "input_blocks.0.0.weight", | |
"conv_in.bias": "input_blocks.0.0.bias", | |
"controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight", | |
"controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias", | |
"controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight", | |
"controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias", | |
}, | |
"class_embed_type": { | |
"class_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"class_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"class_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"class_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
"addition_embed_type": { | |
"add_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"add_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"add_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"add_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
}, | |
"vae": { | |
"encoder.conv_in.weight": "encoder.conv_in.weight", | |
"encoder.conv_in.bias": "encoder.conv_in.bias", | |
"encoder.conv_out.weight": "encoder.conv_out.weight", | |
"encoder.conv_out.bias": "encoder.conv_out.bias", | |
"encoder.conv_norm_out.weight": "encoder.norm_out.weight", | |
"encoder.conv_norm_out.bias": "encoder.norm_out.bias", | |
"decoder.conv_in.weight": "decoder.conv_in.weight", | |
"decoder.conv_in.bias": "decoder.conv_in.bias", | |
"decoder.conv_out.weight": "decoder.conv_out.weight", | |
"decoder.conv_out.bias": "decoder.conv_out.bias", | |
"decoder.conv_norm_out.weight": "decoder.norm_out.weight", | |
"decoder.conv_norm_out.bias": "decoder.norm_out.bias", | |
"quant_conv.weight": "quant_conv.weight", | |
"quant_conv.bias": "quant_conv.bias", | |
"post_quant_conv.weight": "post_quant_conv.weight", | |
"post_quant_conv.bias": "post_quant_conv.bias", | |
}, | |
"openclip": { | |
"layers": { | |
"text_model.embeddings.position_embedding.weight": "positional_embedding", | |
"text_model.embeddings.token_embedding.weight": "token_embedding.weight", | |
"text_model.final_layer_norm.weight": "ln_final.weight", | |
"text_model.final_layer_norm.bias": "ln_final.bias", | |
"text_projection.weight": "text_projection", | |
}, | |
"transformer": { | |
"text_model.encoder.layers.": "resblocks.", | |
"layer_norm1": "ln_1", | |
"layer_norm2": "ln_2", | |
".fc1.": ".c_fc.", | |
".fc2.": ".c_proj.", | |
".self_attn": ".attn", | |
"transformer.text_model.final_layer_norm.": "ln_final.", | |
"transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", | |
"transformer.text_model.embeddings.position_embedding.weight": "positional_embedding", | |
}, | |
}, | |
} | |
SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [ | |
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias", | |
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight", | |
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias", | |
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight", | |
"cond_stage_model.model.transformer.resblocks.23.ln_1.bias", | |
"cond_stage_model.model.transformer.resblocks.23.ln_1.weight", | |
"cond_stage_model.model.transformer.resblocks.23.ln_2.bias", | |
"cond_stage_model.model.transformer.resblocks.23.ln_2.weight", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight", | |
"cond_stage_model.model.text_projection", | |
] | |
# To support legacy scheduler_type argument | |
SCHEDULER_DEFAULT_CONFIG = { | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"interpolation_type": "linear", | |
"num_train_timesteps": 1000, | |
"prediction_type": "epsilon", | |
"sample_max_value": 1.0, | |
"set_alpha_to_one": False, | |
"skip_prk_steps": True, | |
"steps_offset": 1, | |
"timestep_spacing": "leading", | |
} | |
LDM_VAE_KEY = "first_stage_model." | |
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215 | |
PLAYGROUND_VAE_SCALING_FACTOR = 0.5 | |
LDM_UNET_KEY = "model.diffusion_model." | |
LDM_CONTROLNET_KEY = "control_model." | |
LDM_CLIP_PREFIX_TO_REMOVE = [ | |
"cond_stage_model.transformer.", | |
"conditioner.embedders.0.transformer.", | |
] | |
OPEN_CLIP_PREFIX = "conditioner.embedders.0.model." | |
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024 | |
VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"] | |
class SingleFileComponentError(Exception): | |
def __init__(self, message=None): | |
self.message = message | |
super().__init__(self.message) | |
def is_valid_url(url): | |
result = urlparse(url) | |
if result.scheme and result.netloc: | |
return True | |
return False | |
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path): | |
if not is_valid_url(pretrained_model_name_or_path): | |
raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.") | |
pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)" | |
weights_name = None | |
repo_id = (None,) | |
for prefix in VALID_URL_PREFIXES: | |
pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "") | |
match = re.match(pattern, pretrained_model_name_or_path) | |
if not match: | |
logger.warning("Unable to identify the repo_id and weights_name from the provided URL.") | |
return repo_id, weights_name | |
repo_id = f"{match.group(1)}/{match.group(2)}" | |
weights_name = match.group(3) | |
return repo_id, weights_name | |
def _is_model_weights_in_cached_folder(cached_folder, name): | |
pretrained_model_name_or_path = os.path.join(cached_folder, name) | |
weights_exist = False | |
for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]: | |
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): | |
weights_exist = True | |
return weights_exist | |
def load_single_file_checkpoint( | |
pretrained_model_link_or_path, | |
force_download=False, | |
proxies=None, | |
token=None, | |
cache_dir=None, | |
local_files_only=None, | |
revision=None, | |
): | |
if os.path.isfile(pretrained_model_link_or_path): | |
pretrained_model_link_or_path = pretrained_model_link_or_path | |
else: | |
repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path) | |
pretrained_model_link_or_path = _get_model_file( | |
repo_id, | |
weights_name=weights_name, | |
force_download=force_download, | |
cache_dir=cache_dir, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
) | |
checkpoint = load_state_dict(pretrained_model_link_or_path) | |
# some checkpoints contain the model state dict under a "state_dict" key | |
while "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
return checkpoint | |
def fetch_original_config(original_config_file, local_files_only=False): | |
if os.path.isfile(original_config_file): | |
with open(original_config_file, "r") as fp: | |
original_config_file = fp.read() | |
elif is_valid_url(original_config_file): | |
if local_files_only: | |
raise ValueError( | |
"`local_files_only` is set to True, but a URL was provided as `original_config_file`. " | |
"Please provide a valid local file path." | |
) | |
original_config_file = BytesIO(requests.get(original_config_file).content) | |
else: | |
raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.") | |
original_config = yaml.safe_load(original_config_file) | |
return original_config | |
def is_clip_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["clip"] in checkpoint: | |
return True | |
return False | |
def is_clip_sdxl_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint: | |
return True | |
return False | |
def is_clip_sd3_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint: | |
return True | |
return False | |
def is_open_clip_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint: | |
return True | |
return False | |
def is_open_clip_sdxl_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint: | |
return True | |
return False | |
def is_open_clip_sd3_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint: | |
return True | |
return False | |
def is_open_clip_sdxl_refiner_model(checkpoint): | |
if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint: | |
return True | |
return False | |
def is_clip_model_in_single_file(class_obj, checkpoint): | |
is_clip_in_checkpoint = any( | |
[ | |
is_clip_model(checkpoint), | |
is_clip_sd3_model(checkpoint), | |
is_open_clip_model(checkpoint), | |
is_open_clip_sdxl_model(checkpoint), | |
is_open_clip_sdxl_refiner_model(checkpoint), | |
is_open_clip_sd3_model(checkpoint), | |
] | |
) | |
if ( | |
class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection" | |
) and is_clip_in_checkpoint: | |
return True | |
return False | |
def infer_diffusers_model_type(checkpoint): | |
if ( | |
CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint | |
and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9 | |
): | |
if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024: | |
model_type = "inpainting_v2" | |
else: | |
model_type = "inpainting" | |
elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024: | |
model_type = "v2" | |
elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint: | |
model_type = "playground-v2-5" | |
elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint: | |
model_type = "xl_base" | |
elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint: | |
model_type = "xl_refiner" | |
elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint: | |
model_type = "upscale" | |
elif CHECKPOINT_KEY_NAMES["controlnet"] in checkpoint: | |
model_type = "controlnet" | |
elif ( | |
CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint | |
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536 | |
): | |
model_type = "stable_cascade_stage_c_lite" | |
elif ( | |
CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint | |
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048 | |
): | |
model_type = "stable_cascade_stage_c" | |
elif ( | |
CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint | |
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576 | |
): | |
model_type = "stable_cascade_stage_b_lite" | |
elif ( | |
CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint | |
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640 | |
): | |
model_type = "stable_cascade_stage_b" | |
elif CHECKPOINT_KEY_NAMES["sd3"] in checkpoint: | |
model_type = "sd3" | |
elif CHECKPOINT_KEY_NAMES["animatediff"] in checkpoint: | |
if CHECKPOINT_KEY_NAMES["animatediff_scribble"] in checkpoint: | |
model_type = "animatediff_scribble" | |
elif CHECKPOINT_KEY_NAMES["animatediff_rgb"] in checkpoint: | |
model_type = "animatediff_rgb" | |
elif CHECKPOINT_KEY_NAMES["animatediff_v2"] in checkpoint: | |
model_type = "animatediff_v2" | |
elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff_sdxl_beta"]].shape[-1] == 320: | |
model_type = "animatediff_sdxl_beta" | |
elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff"]].shape[1] == 24: | |
model_type = "animatediff_v1" | |
else: | |
model_type = "animatediff_v3" | |
elif CHECKPOINT_KEY_NAMES["flux"] in checkpoint: | |
if "guidance_in.in_layer.bias" in checkpoint: | |
model_type = "flux-dev" | |
else: | |
model_type = "flux-schnell" | |
else: | |
model_type = "v1" | |
return model_type | |
def fetch_diffusers_config(checkpoint): | |
model_type = infer_diffusers_model_type(checkpoint) | |
model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type] | |
return model_path | |
def set_image_size(checkpoint, image_size=None): | |
if image_size: | |
return image_size | |
model_type = infer_diffusers_model_type(checkpoint) | |
image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type] | |
return image_size | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_diffusers_config_from_ldm( | |
original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None | |
): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if image_size is not None: | |
deprecation_message = ( | |
"Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`" | |
"is deprecated and will be ignored in future versions." | |
) | |
deprecate("image_size", "1.0.0", deprecation_message) | |
image_size = set_image_size(checkpoint, image_size=image_size) | |
if ( | |
"unet_config" in original_config["model"]["params"] | |
and original_config["model"]["params"]["unet_config"] is not None | |
): | |
unet_params = original_config["model"]["params"]["unet_config"]["params"] | |
else: | |
unet_params = original_config["model"]["params"]["network_config"]["params"] | |
if num_in_channels is not None: | |
deprecation_message = ( | |
"Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`" | |
"is deprecated and will be ignored in future versions." | |
) | |
deprecate("image_size", "1.0.0", deprecation_message) | |
in_channels = num_in_channels | |
else: | |
in_channels = unet_params["in_channels"] | |
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
if unet_params["transformer_depth"] is not None: | |
transformer_layers_per_block = ( | |
unet_params["transformer_depth"] | |
if isinstance(unet_params["transformer_depth"], int) | |
else list(unet_params["transformer_depth"]) | |
) | |
else: | |
transformer_layers_per_block = 1 | |
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) | |
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None | |
use_linear_projection = ( | |
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False | |
) | |
if use_linear_projection: | |
# stable diffusion 2-base-512 and 2-768 | |
if head_dim is None: | |
head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"] | |
head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])] | |
class_embed_type = None | |
addition_embed_type = None | |
addition_time_embed_dim = None | |
projection_class_embeddings_input_dim = None | |
context_dim = None | |
if unet_params["context_dim"] is not None: | |
context_dim = ( | |
unet_params["context_dim"] | |
if isinstance(unet_params["context_dim"], int) | |
else unet_params["context_dim"][0] | |
) | |
if "num_classes" in unet_params: | |
if unet_params["num_classes"] == "sequential": | |
if context_dim in [2048, 1280]: | |
# SDXL | |
addition_embed_type = "text_time" | |
addition_time_embed_dim = 256 | |
else: | |
class_embed_type = "projection" | |
assert "adm_in_channels" in unet_params | |
projection_class_embeddings_input_dim = unet_params["adm_in_channels"] | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": in_channels, | |
"down_block_types": down_block_types, | |
"block_out_channels": block_out_channels, | |
"layers_per_block": unet_params["num_res_blocks"], | |
"cross_attention_dim": context_dim, | |
"attention_head_dim": head_dim, | |
"use_linear_projection": use_linear_projection, | |
"class_embed_type": class_embed_type, | |
"addition_embed_type": addition_embed_type, | |
"addition_time_embed_dim": addition_time_embed_dim, | |
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
"transformer_layers_per_block": transformer_layers_per_block, | |
} | |
if upcast_attention is not None: | |
deprecation_message = ( | |
"Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`" | |
"is deprecated and will be ignored in future versions." | |
) | |
deprecate("image_size", "1.0.0", deprecation_message) | |
config["upcast_attention"] = upcast_attention | |
if "disable_self_attentions" in unet_params: | |
config["only_cross_attention"] = unet_params["disable_self_attentions"] | |
if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int): | |
config["num_class_embeds"] = unet_params["num_classes"] | |
config["out_channels"] = unet_params["out_channels"] | |
config["up_block_types"] = up_block_types | |
return config | |
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs): | |
if image_size is not None: | |
deprecation_message = ( | |
"Configuring ControlNetModel with the `image_size` argument" | |
"is deprecated and will be ignored in future versions." | |
) | |
deprecate("image_size", "1.0.0", deprecation_message) | |
image_size = set_image_size(checkpoint, image_size=image_size) | |
unet_params = original_config["model"]["params"]["control_stage_config"]["params"] | |
diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size) | |
controlnet_config = { | |
"conditioning_channels": unet_params["hint_channels"], | |
"in_channels": diffusers_unet_config["in_channels"], | |
"down_block_types": diffusers_unet_config["down_block_types"], | |
"block_out_channels": diffusers_unet_config["block_out_channels"], | |
"layers_per_block": diffusers_unet_config["layers_per_block"], | |
"cross_attention_dim": diffusers_unet_config["cross_attention_dim"], | |
"attention_head_dim": diffusers_unet_config["attention_head_dim"], | |
"use_linear_projection": diffusers_unet_config["use_linear_projection"], | |
"class_embed_type": diffusers_unet_config["class_embed_type"], | |
"addition_embed_type": diffusers_unet_config["addition_embed_type"], | |
"addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"], | |
"projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"], | |
"transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"], | |
} | |
return controlnet_config | |
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if image_size is not None: | |
deprecation_message = ( | |
"Configuring AutoencoderKL with the `image_size` argument" | |
"is deprecated and will be ignored in future versions." | |
) | |
deprecate("image_size", "1.0.0", deprecation_message) | |
image_size = set_image_size(checkpoint, image_size=image_size) | |
if "edm_mean" in checkpoint and "edm_std" in checkpoint: | |
latents_mean = checkpoint["edm_mean"] | |
latents_std = checkpoint["edm_std"] | |
else: | |
latents_mean = None | |
latents_std = None | |
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None): | |
scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR | |
elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]): | |
scaling_factor = original_config["model"]["params"]["scale_factor"] | |
elif scaling_factor is None: | |
scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR | |
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params["in_channels"], | |
"out_channels": vae_params["out_ch"], | |
"down_block_types": down_block_types, | |
"up_block_types": up_block_types, | |
"block_out_channels": block_out_channels, | |
"latent_channels": vae_params["z_channels"], | |
"layers_per_block": vae_params["num_res_blocks"], | |
"scaling_factor": scaling_factor, | |
} | |
if latents_mean is not None and latents_std is not None: | |
config.update({"latents_mean": latents_mean, "latents_std": latents_std}) | |
return config | |
def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None): | |
for ldm_key in ldm_keys: | |
diffusers_key = ( | |
ldm_key.replace("in_layers.0", "norm1") | |
.replace("in_layers.2", "conv1") | |
.replace("out_layers.0", "norm2") | |
.replace("out_layers.3", "conv2") | |
.replace("emb_layers.1", "time_emb_proj") | |
.replace("skip_connection", "conv_shortcut") | |
) | |
if mapping: | |
diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"]) | |
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) | |
def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in ldm_keys: | |
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]) | |
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) | |
def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in keys: | |
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut") | |
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) | |
def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in keys: | |
diffusers_key = ( | |
ldm_key.replace(mapping["old"], mapping["new"]) | |
.replace("norm.weight", "group_norm.weight") | |
.replace("norm.bias", "group_norm.bias") | |
.replace("q.weight", "to_q.weight") | |
.replace("q.bias", "to_q.bias") | |
.replace("k.weight", "to_k.weight") | |
.replace("k.bias", "to_k.bias") | |
.replace("v.weight", "to_v.weight") | |
.replace("v.bias", "to_v.bias") | |
.replace("proj_out.weight", "to_out.0.weight") | |
.replace("proj_out.bias", "to_out.0.bias") | |
) | |
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
shape = new_checkpoint[diffusers_key].shape | |
if len(shape) == 3: | |
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0] | |
elif len(shape) == 4: | |
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0] | |
def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs): | |
is_stage_c = "clip_txt_mapper.weight" in checkpoint | |
if is_stage_c: | |
state_dict = {} | |
for key in checkpoint.keys(): | |
if key.endswith("in_proj_weight"): | |
weights = checkpoint[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] | |
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] | |
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] | |
elif key.endswith("in_proj_bias"): | |
weights = checkpoint[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] | |
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] | |
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] | |
elif key.endswith("out_proj.weight"): | |
weights = checkpoint[key] | |
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights | |
elif key.endswith("out_proj.bias"): | |
weights = checkpoint[key] | |
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights | |
else: | |
state_dict[key] = checkpoint[key] | |
else: | |
state_dict = {} | |
for key in checkpoint.keys(): | |
if key.endswith("in_proj_weight"): | |
weights = checkpoint[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] | |
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] | |
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] | |
elif key.endswith("in_proj_bias"): | |
weights = checkpoint[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] | |
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] | |
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] | |
elif key.endswith("out_proj.weight"): | |
weights = checkpoint[key] | |
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights | |
elif key.endswith("out_proj.bias"): | |
weights = checkpoint[key] | |
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights | |
# rename clip_mapper to clip_txt_pooled_mapper | |
elif key.endswith("clip_mapper.weight"): | |
weights = checkpoint[key] | |
state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights | |
elif key.endswith("clip_mapper.bias"): | |
weights = checkpoint[key] | |
state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights | |
else: | |
state_dict[key] = checkpoint[key] | |
return state_dict | |
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
unet_key = LDM_UNET_KEY | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
logger.warning("Checkpoint has both EMA and non-EMA weights.") | |
logger.warning( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
logger.warning( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"] | |
for diffusers_key, ldm_key in ldm_unet_keys.items(): | |
if ldm_key not in unet_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]): | |
class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"] | |
for diffusers_key, ldm_key in class_embed_keys.items(): | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"): | |
addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"] | |
for diffusers_key, ldm_key in addition_embed_keys.items(): | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
# Relevant to StableDiffusionUpscalePipeline | |
if "num_class_embeds" in config: | |
if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict): | |
new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
# Down blocks | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
# Mid blocks | |
for key in middle_blocks.keys(): | |
diffusers_key = max(key - 1, 0) | |
if key % 2 == 0: | |
update_unet_resnet_ldm_to_diffusers( | |
middle_blocks[key], | |
new_checkpoint, | |
unet_state_dict, | |
mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"}, | |
) | |
else: | |
update_unet_attention_ldm_to_diffusers( | |
middle_blocks[key], | |
new_checkpoint, | |
unet_state_dict, | |
mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"}, | |
) | |
# Up Blocks | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
attentions = [ | |
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key | |
] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
if f"output_blocks.{i}.1.conv.weight" in unet_state_dict: | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.1.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.1.conv.bias" | |
] | |
if f"output_blocks.{i}.2.conv.weight" in unet_state_dict: | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.2.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.2.conv.bias" | |
] | |
return new_checkpoint | |
def convert_controlnet_checkpoint( | |
checkpoint, | |
config, | |
**kwargs, | |
): | |
# Some controlnet ckpt files are distributed independently from the rest of the | |
# model components i.e. https://huggingface.co/thibaud/controlnet-sd21/ | |
if "time_embed.0.weight" in checkpoint: | |
controlnet_state_dict = checkpoint | |
else: | |
controlnet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
controlnet_key = LDM_CONTROLNET_KEY | |
for key in keys: | |
if key.startswith(controlnet_key): | |
controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"] | |
for diffusers_key, ldm_key in ldm_controlnet_keys.items(): | |
if ldm_key not in controlnet_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len( | |
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer} | |
) | |
input_blocks = { | |
layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Down blocks | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
controlnet_state_dict, | |
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
controlnet_state_dict, | |
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
# controlnet down blocks | |
for i in range(num_input_blocks): | |
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight") | |
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias") | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len( | |
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer} | |
) | |
middle_blocks = { | |
layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Mid blocks | |
for key in middle_blocks.keys(): | |
diffusers_key = max(key - 1, 0) | |
if key % 2 == 0: | |
update_unet_resnet_ldm_to_diffusers( | |
middle_blocks[key], | |
new_checkpoint, | |
controlnet_state_dict, | |
mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"}, | |
) | |
else: | |
update_unet_attention_ldm_to_diffusers( | |
middle_blocks[key], | |
new_checkpoint, | |
controlnet_state_dict, | |
mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"}, | |
) | |
# mid block | |
new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight") | |
new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias") | |
# controlnet cond embedding blocks | |
cond_embedding_blocks = { | |
".".join(layer.split(".")[:2]) | |
for layer in controlnet_state_dict | |
if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer) | |
} | |
num_cond_embedding_blocks = len(cond_embedding_blocks) | |
for idx in range(1, num_cond_embedding_blocks + 1): | |
diffusers_idx = idx - 1 | |
cond_block_id = 2 * idx | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get( | |
f"input_hint_block.{cond_block_id}.weight" | |
) | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get( | |
f"input_hint_block.{cond_block_id}.bias" | |
) | |
return new_checkpoint | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
# remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys | |
vae_state_dict = {} | |
keys = list(checkpoint.keys()) | |
vae_key = LDM_VAE_KEY if any(k.startswith(LDM_VAE_KEY) for k in keys) else "" | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"] | |
for diffusers_key, ldm_key in vae_diffusers_ldm_map.items(): | |
if ldm_key not in vae_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = vae_state_dict[ldm_key] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len(config["down_block_types"]) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}, | |
) | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, | |
) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
update_vae_attentions_ldm_to_diffusers( | |
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
) | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len(config["up_block_types"]) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}, | |
) | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, | |
) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
update_vae_attentions_ldm_to_diffusers( | |
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None): | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
remove_prefixes = [] | |
remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE) | |
if remove_prefix: | |
remove_prefixes.append(remove_prefix) | |
for key in keys: | |
for prefix in remove_prefixes: | |
if key.startswith(prefix): | |
diffusers_key = key.replace(prefix, "") | |
text_model_dict[diffusers_key] = checkpoint.get(key) | |
return text_model_dict | |
def convert_open_clip_checkpoint( | |
text_model, | |
checkpoint, | |
prefix="cond_stage_model.model.", | |
): | |
text_model_dict = {} | |
text_proj_key = prefix + "text_projection" | |
if text_proj_key in checkpoint: | |
text_proj_dim = int(checkpoint[text_proj_key].shape[0]) | |
elif hasattr(text_model.config, "projection_dim"): | |
text_proj_dim = text_model.config.projection_dim | |
else: | |
text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM | |
keys = list(checkpoint.keys()) | |
keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE | |
openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"] | |
for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items(): | |
ldm_key = prefix + ldm_key | |
if ldm_key not in checkpoint: | |
continue | |
if ldm_key in keys_to_ignore: | |
continue | |
if ldm_key.endswith("text_projection"): | |
text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous() | |
else: | |
text_model_dict[diffusers_key] = checkpoint[ldm_key] | |
for key in keys: | |
if key in keys_to_ignore: | |
continue | |
if not key.startswith(prefix + "transformer."): | |
continue | |
diffusers_key = key.replace(prefix + "transformer.", "") | |
transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"] | |
for new_key, old_key in transformer_diffusers_to_ldm_map.items(): | |
diffusers_key = ( | |
diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "") | |
) | |
if key.endswith(".in_proj_weight"): | |
weight_value = checkpoint.get(key) | |
text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach() | |
text_model_dict[diffusers_key + ".k_proj.weight"] = ( | |
weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach() | |
) | |
text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach() | |
elif key.endswith(".in_proj_bias"): | |
weight_value = checkpoint.get(key) | |
text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach() | |
text_model_dict[diffusers_key + ".k_proj.bias"] = ( | |
weight_value[text_proj_dim : text_proj_dim * 2].clone().detach() | |
) | |
text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach() | |
else: | |
text_model_dict[diffusers_key] = checkpoint.get(key) | |
return text_model_dict | |
def create_diffusers_clip_model_from_ldm( | |
cls, | |
checkpoint, | |
subfolder="", | |
config=None, | |
torch_dtype=None, | |
local_files_only=None, | |
is_legacy_loading=False, | |
): | |
if config: | |
config = {"pretrained_model_name_or_path": config} | |
else: | |
config = fetch_diffusers_config(checkpoint) | |
# For backwards compatibility | |
# Older versions of `from_single_file` expected CLIP configs to be placed in their original transformers model repo | |
# in the cache_dir, rather than in a subfolder of the Diffusers model | |
if is_legacy_loading: | |
logger.warning( | |
( | |
"Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update " | |
"the local cache directory with the necessary CLIP model config files. " | |
"Attempting to load CLIP model from legacy cache directory." | |
) | |
) | |
if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): | |
clip_config = "openai/clip-vit-large-patch14" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "" | |
elif is_open_clip_model(checkpoint): | |
clip_config = "stabilityai/stable-diffusion-2" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "text_encoder" | |
else: | |
clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "" | |
model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
model = cls(model_config) | |
position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1] | |
if is_clip_model(checkpoint): | |
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) | |
elif ( | |
is_clip_sdxl_model(checkpoint) | |
and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim | |
): | |
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) | |
elif ( | |
is_clip_sd3_model(checkpoint) | |
and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim | |
): | |
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.") | |
diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim) | |
elif is_open_clip_model(checkpoint): | |
prefix = "cond_stage_model.model." | |
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) | |
elif ( | |
is_open_clip_sdxl_model(checkpoint) | |
and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim | |
): | |
prefix = "conditioner.embedders.1.model." | |
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) | |
elif is_open_clip_sdxl_refiner_model(checkpoint): | |
prefix = "conditioner.embedders.0.model." | |
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) | |
elif ( | |
is_open_clip_sd3_model(checkpoint) | |
and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim | |
): | |
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.") | |
else: | |
raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.") | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) | |
else: | |
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) | |
if model._keys_to_ignore_on_load_unexpected is not None: | |
for pat in model._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
if torch_dtype is not None: | |
model.to(torch_dtype) | |
model.eval() | |
return model | |
def _legacy_load_scheduler( | |
cls, | |
checkpoint, | |
component_name, | |
original_config=None, | |
**kwargs, | |
): | |
scheduler_type = kwargs.get("scheduler_type", None) | |
prediction_type = kwargs.get("prediction_type", None) | |
if scheduler_type is not None: | |
deprecation_message = ( | |
"Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`." | |
) | |
deprecate("scheduler_type", "1.0.0", deprecation_message) | |
if prediction_type is not None: | |
deprecation_message = ( | |
"Please configure an instance of a Scheduler with the appropriate `prediction_type` " | |
"and pass the object directly to the `scheduler` argument in `from_single_file`." | |
) | |
deprecate("prediction_type", "1.0.0", deprecation_message) | |
scheduler_config = SCHEDULER_DEFAULT_CONFIG | |
model_type = infer_diffusers_model_type(checkpoint=checkpoint) | |
global_step = checkpoint["global_step"] if "global_step" in checkpoint else None | |
if original_config: | |
num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000) | |
else: | |
num_train_timesteps = 1000 | |
scheduler_config["num_train_timesteps"] = num_train_timesteps | |
if model_type == "v2": | |
if prediction_type is None: | |
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` # as it relies on a brittle global step parameter here | |
prediction_type = "epsilon" if global_step == 875000 else "v_prediction" | |
else: | |
prediction_type = prediction_type or "epsilon" | |
scheduler_config["prediction_type"] = prediction_type | |
if model_type in ["xl_base", "xl_refiner"]: | |
scheduler_type = "euler" | |
elif model_type == "playground": | |
scheduler_type = "edm_dpm_solver_multistep" | |
else: | |
if original_config: | |
beta_start = original_config["model"]["params"].get("linear_start") | |
beta_end = original_config["model"]["params"].get("linear_end") | |
else: | |
beta_start = 0.02 | |
beta_end = 0.085 | |
scheduler_config["beta_start"] = beta_start | |
scheduler_config["beta_end"] = beta_end | |
scheduler_config["beta_schedule"] = "scaled_linear" | |
scheduler_config["clip_sample"] = False | |
scheduler_config["set_alpha_to_one"] = False | |
# to deal with an edge case StableDiffusionUpscale pipeline has two schedulers | |
if component_name == "low_res_scheduler": | |
return cls.from_config( | |
{ | |
"beta_end": 0.02, | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.0001, | |
"clip_sample": True, | |
"num_train_timesteps": 1000, | |
"prediction_type": "epsilon", | |
"trained_betas": None, | |
"variance_type": "fixed_small", | |
} | |
) | |
if scheduler_type is None: | |
return cls.from_config(scheduler_config) | |
elif scheduler_type == "pndm": | |
scheduler_config["skip_prk_steps"] = True | |
scheduler = PNDMScheduler.from_config(scheduler_config) | |
elif scheduler_type == "lms": | |
scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "heun": | |
scheduler = HeunDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "euler": | |
scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "euler-ancestral": | |
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "dpm": | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
elif scheduler_type == "ddim": | |
scheduler = DDIMScheduler.from_config(scheduler_config) | |
elif scheduler_type == "edm_dpm_solver_multistep": | |
scheduler_config = { | |
"algorithm_type": "dpmsolver++", | |
"dynamic_thresholding_ratio": 0.995, | |
"euler_at_final": False, | |
"final_sigmas_type": "zero", | |
"lower_order_final": True, | |
"num_train_timesteps": 1000, | |
"prediction_type": "epsilon", | |
"rho": 7.0, | |
"sample_max_value": 1.0, | |
"sigma_data": 0.5, | |
"sigma_max": 80.0, | |
"sigma_min": 0.002, | |
"solver_order": 2, | |
"solver_type": "midpoint", | |
"thresholding": False, | |
} | |
scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config) | |
else: | |
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") | |
return scheduler | |
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False): | |
if config: | |
config = {"pretrained_model_name_or_path": config} | |
else: | |
config = fetch_diffusers_config(checkpoint) | |
if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): | |
clip_config = "openai/clip-vit-large-patch14" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "" | |
elif is_open_clip_model(checkpoint): | |
clip_config = "stabilityai/stable-diffusion-2" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "tokenizer" | |
else: | |
clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config["pretrained_model_name_or_path"] = clip_config | |
subfolder = "" | |
tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) | |
return tokenizer | |
def _legacy_load_safety_checker(local_files_only, torch_dtype): | |
# Support for loading safety checker components using the deprecated | |
# `load_safety_checker` argument. | |
from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
feature_extractor = AutoImageProcessor.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype | |
) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype | |
) | |
return {"safety_checker": safety_checker, "feature_extractor": feature_extractor} | |
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale; | |
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation | |
def swap_scale_shift(weight, dim): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): | |
converted_state_dict = {} | |
keys = list(checkpoint.keys()) | |
for k in keys: | |
if "model.diffusion_model." in k: | |
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) | |
num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1 # noqa: C401 | |
caption_projection_dim = 1536 | |
# Positional and patch embeddings. | |
converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed") | |
converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight") | |
converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias") | |
# Timestep embeddings. | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop( | |
"t_embedder.mlp.0.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias") | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop( | |
"t_embedder.mlp.2.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias") | |
# Context projections. | |
converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight") | |
converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias") | |
# Pooled context projection. | |
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight") | |
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias") | |
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight") | |
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias") | |
# Transformer blocks 🎸. | |
for i in range(num_layers): | |
# Q, K, V | |
sample_q, sample_k, sample_v = torch.chunk( | |
checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0 | |
) | |
context_q, context_k, context_v = torch.chunk( | |
checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0 | |
) | |
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( | |
checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0 | |
) | |
context_q_bias, context_k_bias, context_v_bias = torch.chunk( | |
checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v]) | |
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias]) | |
# output projections. | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.attn.proj.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.attn.proj.bias" | |
) | |
# norms. | |
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias" | |
) | |
else: | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift( | |
checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"), | |
dim=caption_projection_dim, | |
) | |
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift( | |
checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"), | |
dim=caption_projection_dim, | |
) | |
# ffs. | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc1.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc2.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.x_block.mlp.fc2.bias" | |
) | |
if not (i == num_layers - 1): | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc1.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc1.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc2.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop( | |
f"joint_blocks.{i}.context_block.mlp.fc2.bias" | |
) | |
# Final blocks. | |
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight") | |
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias") | |
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( | |
checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim | |
) | |
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( | |
checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim | |
) | |
return converted_state_dict | |
def is_t5_in_single_file(checkpoint): | |
if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint: | |
return True | |
return False | |
def convert_sd3_t5_checkpoint_to_diffusers(checkpoint): | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
remove_prefixes = ["text_encoders.t5xxl.transformer."] | |
for key in keys: | |
for prefix in remove_prefixes: | |
if key.startswith(prefix): | |
diffusers_key = key.replace(prefix, "") | |
text_model_dict[diffusers_key] = checkpoint.get(key) | |
return text_model_dict | |
def create_diffusers_t5_model_from_checkpoint( | |
cls, | |
checkpoint, | |
subfolder="", | |
config=None, | |
torch_dtype=None, | |
local_files_only=None, | |
): | |
if config: | |
config = {"pretrained_model_name_or_path": config} | |
else: | |
config = fetch_diffusers_config(checkpoint) | |
model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
model = cls(model_config) | |
diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint) | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) | |
if model._keys_to_ignore_on_load_unexpected is not None: | |
for pat in model._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
model.load_state_dict(diffusers_format_checkpoint) | |
use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (torch_dtype == torch.float16) | |
if use_keep_in_fp32_modules: | |
keep_in_fp32_modules = model._keep_in_fp32_modules | |
else: | |
keep_in_fp32_modules = [] | |
if keep_in_fp32_modules is not None: | |
for name, param in model.named_parameters(): | |
if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules): | |
# param = param.to(torch.float32) does not work here as only in the local scope. | |
param.data = param.data.to(torch.float32) | |
return model | |
def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs): | |
converted_state_dict = {} | |
for k, v in checkpoint.items(): | |
if "pos_encoder" in k: | |
continue | |
else: | |
converted_state_dict[ | |
k.replace(".norms.0", ".norm1") | |
.replace(".norms.1", ".norm2") | |
.replace(".ff_norm", ".norm3") | |
.replace(".attention_blocks.0", ".attn1") | |
.replace(".attention_blocks.1", ".attn2") | |
.replace(".temporal_transformer", "") | |
] = v | |
return converted_state_dict | |
def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): | |
converted_state_dict = {} | |
num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 # noqa: C401 | |
num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 # noqa: C401 | |
mlp_ratio = 4.0 | |
inner_dim = 3072 | |
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale; | |
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation | |
def swap_scale_shift(weight): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
## time_text_embed.timestep_embedder <- time_in | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop( | |
"time_in.in_layer.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias") | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop( | |
"time_in.out_layer.weight" | |
) | |
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias") | |
## time_text_embed.text_embedder <- vector_in | |
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight") | |
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias") | |
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop( | |
"vector_in.out_layer.weight" | |
) | |
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias") | |
# guidance | |
has_guidance = any("guidance" in k for k in checkpoint) | |
if has_guidance: | |
converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop( | |
"guidance_in.in_layer.weight" | |
) | |
converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop( | |
"guidance_in.in_layer.bias" | |
) | |
converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop( | |
"guidance_in.out_layer.weight" | |
) | |
converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop( | |
"guidance_in.out_layer.bias" | |
) | |
# context_embedder | |
converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight") | |
converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias") | |
# x_embedder | |
converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight") | |
converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias") | |
# double transformer blocks | |
for i in range(num_layers): | |
block_prefix = f"transformer_blocks.{i}." | |
# norms. | |
## norm1 | |
converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.img_mod.lin.weight" | |
) | |
converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.img_mod.lin.bias" | |
) | |
## norm1_context | |
converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mod.lin.weight" | |
) | |
converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mod.lin.bias" | |
) | |
# Q, K, V | |
sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0) | |
context_q, context_k, context_v = torch.chunk( | |
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0 | |
) | |
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( | |
checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0 | |
) | |
context_q_bias, context_k_bias, context_v_bias = torch.chunk( | |
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q]) | |
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k]) | |
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v]) | |
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias]) | |
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q]) | |
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias]) | |
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k]) | |
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias]) | |
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v]) | |
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias]) | |
# qk_norm | |
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.img_attn.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.img_attn.norm.key_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_attn.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_attn.norm.key_norm.scale" | |
) | |
# ff img_mlp | |
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.img_mlp.0.weight" | |
) | |
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias") | |
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight") | |
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias") | |
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mlp.0.weight" | |
) | |
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mlp.0.bias" | |
) | |
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mlp.2.weight" | |
) | |
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_mlp.2.bias" | |
) | |
# output projections. | |
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.img_attn.proj.weight" | |
) | |
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.img_attn.proj.bias" | |
) | |
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_attn.proj.weight" | |
) | |
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop( | |
f"double_blocks.{i}.txt_attn.proj.bias" | |
) | |
# single transfomer blocks | |
for i in range(num_single_layers): | |
block_prefix = f"single_transformer_blocks.{i}." | |
# norm.linear <- single_blocks.0.modulation.lin | |
converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop( | |
f"single_blocks.{i}.modulation.lin.weight" | |
) | |
converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop( | |
f"single_blocks.{i}.modulation.lin.bias" | |
) | |
# Q, K, V, mlp | |
mlp_hidden_dim = int(inner_dim * mlp_ratio) | |
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) | |
q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0) | |
q_bias, k_bias, v_bias, mlp_bias = torch.split( | |
checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q]) | |
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k]) | |
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v]) | |
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias]) | |
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp]) | |
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias]) | |
# qk norm | |
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop( | |
f"single_blocks.{i}.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop( | |
f"single_blocks.{i}.norm.key_norm.scale" | |
) | |
# output projections. | |
converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight") | |
converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias") | |
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight") | |
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias") | |
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( | |
checkpoint.pop("final_layer.adaLN_modulation.1.weight") | |
) | |
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( | |
checkpoint.pop("final_layer.adaLN_modulation.1.bias") | |
) | |
return converted_state_dict | |